会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Epitaxial thin films
    • 外延薄膜
    • US07033637B1
    • 2006-04-25
    • US09889237
    • 2000-01-12
    • Andrew Tye HuntGirish DeshpandeWen-Yi LinTzyy-Jiuan Jan
    • Andrew Tye HuntGirish DeshpandeWen-Yi LinTzyy-Jiuan Jan
    • B05D5/12
    • H01M8/124B01D53/228B01D67/0072B01D71/024B01D2256/12B01D2325/22B01D2325/26C23C16/453H01G4/1209H01G4/33H01M8/0687H01M8/1253Y02E60/525Y02P70/56Y10T29/49115Y10T29/5313Y10T29/53135Y10T29/532Y10T29/53204
    • Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.
    • 公开了用作高温超导体的缓冲层的外延薄膜,固体氧化物燃料电池(SOFC)中的电解质,电子装置中的气体分离膜或电介质材料。 通过使用CCVD,CACVD或任何其它合适的沉积工艺,可以形成具有无孔,理想晶界和致密结构的外延膜。 公开了几种不同类型的材料用作高温超导体中的缓冲层。 此外,在SOFC中使用外延薄膜用于电解质和电极形成导致无孔和理想的增益边界/界面微结构的致密化。 还公开了用于生产氧气和氢气的气体分离膜。 这些半透膜由多孔陶瓷基板上的高质量,致密,气密,无针孔的微小尺度的混合导电氧化物层形成。 本文还介绍了作为电容器中的介电材料的外延薄膜。 根据电容值的物理结构和介电常数,使用电容器。 本发明的外延薄膜形成具有极高介电常数的低损耗介电层。 这种高介电常数允许形成可以通过在它们的电极之间施加直流偏压来调整其电容的电容器。
    • 5. 发明申请
    • Antimicrobial coatings
    • 抗微生物涂料
    • US20100021710A1
    • 2010-01-28
    • US12499507
    • 2009-07-08
    • Andrew Tye HuntHolly E. HarrisMichelle Hendrick
    • Andrew Tye HuntHolly E. HarrisMichelle Hendrick
    • B32B15/08
    • A01N59/16A01N59/20Y10T428/265A01N25/02A01N25/34A01N2300/00
    • The present invention comprises the use of silver-containing nanomaterials that have reduced interaction with light and still mitigate the growth of microorganisms, including fungi. The nanolayer is sufficiently thin and can be non-continuous, so that it has nominal optical effects on the material it is formed on. Silver is combined with other elements to minimize its diffusion and growth into larger sized grains that then would have increased effects on optical properties. Preferably, the additional elements also have mitigation properties for microorganisms, but are not harmful to larger organisms, including humans. Embodiments of the present invention can be used on a wide range of substrates, used in applications such as food processing, food packaging, medical instruments and devices, surgical and health facility surfaces, and other surfaces where it is desirable to mitigate or control the growth of microorganisms.
    • 本发明包括使用具有减少与光的相互作用并且还减轻包括真菌在内的微生物生长的含银纳米材料。 纳米层足够薄并且可以是非连续的,使得其对其形成的材料具有标称的光学效果。 银与其他元素组合以使其扩散和生长最小化成更大尺寸的颗粒,然后将对光学性质产生增加的影响。 优选地,附加元件还具有微生物的减轻性质,但对包括人类的较大生物体无害。 本发明的实施方案可以用于广泛的基材,用于食品加工,食品包装,医疗器械和器械,外科和健康设施表面等应用,以及希望缓解或控制生长的其它表面 的微生物。
    • 6. 发明申请
    • NANOPARTICULATE-CATALYZED OXYGEN TRANSFER PROCESSES
    • 纳米催化剂催化氧传递方法
    • US20090314682A1
    • 2009-12-24
    • US11473463
    • 2006-06-23
    • Andrew Tye HuntRichard C. Breitkopf
    • Andrew Tye HuntRichard C. Breitkopf
    • C10G57/00C10G17/00
    • C10G55/04
    • Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen. Stages can be alone or combined. Parallel reactors can provide continuous reactant flow. Each of the processes can be carried out individually.
    • 作为稀土金属的氧化物,稀土金属的组合以及过渡金属和稀土金属的组合的氧转移材料的纳米微粒用作各种工艺中的催化剂。 相对于微米级颗粒物,意想不到的大的热效率。 使用这些催化剂的方法在多级反应器中举例说明。 示例的反应器裂解C6至C20烃,对烃流进行脱硫并重整流中的烃以产生氢。 在第一反应器阶段,蒸汽和烃通过颗粒状混合稀土金属氧化物裂解较大的烃分子。 在第二阶段,蒸汽和烃通过使烃脱硫的颗粒材料。 在第三阶段中,烃和蒸汽通过加热的混合的过渡金属/稀土金属氧化物以重整低级烃并由此产生氢。 阶段可以单独或组合。 平行反应器可以提供连续的反应物流。 每个进程可以单独执行。
    • 8. 发明授权
    • Variable capacitors, composite materials
    • 可变电容器,复合材料
    • US07031136B2
    • 2006-04-18
    • US10474741
    • 2002-04-09
    • Andrew Tye HuntMiodrag OljacaScott FlanaganGirish DeshpandeStein LeePeter W. Faguy
    • Andrew Tye HuntMiodrag OljacaScott FlanaganGirish DeshpandeStein LeePeter W. Faguy
    • H01G5/00
    • H01G7/06
    • Tunable capacitors (10, 20, 30, 40) have a dielectric material (16, 26, 36, 42) between electrodes, which dielectric material comprises an insulating material (17, 27, 37, 42) and electrically conductive material, (18, 28, 38, 48) e.g., conductive nanoparticulates, dispersed therein. In certain cases, enhanced tune-ability is achieved when the dielectric material comprises elongated nanoparticulates (38). Further enhanced tune-ability may be achieved by aligning elongated particulates in an electrode-to-electrode direction. Nanoparticulates may be produced by heating passivated nanoparticulates. Passivated nanoparticulates may be covalently bound within a polymeric matrix. High bias potential device structures can be formed with preferential mobilities.
    • 可调电容器(10,20,30,40)在电极之间具有介电材料(16,26,36,42),该电介质材料包括绝缘材料(17,27,37,42)和导电材料(18 ,28,38,48),例如,分散在其中的导电纳米颗粒。 在某些情况下,当介电材料包括细长的纳米颗粒(38)时,可实现增强的调谐能力。 可以通过使电极对电极方向上的细长颗粒对准来实现进一步增强的调谐能力。 纳米微粒可以通过加热钝化的纳米颗粒来生产。 钝化的纳米颗粒可以共价结合在聚合物基质内。 可以以优先的迁移率形成高偏置电位器件结构。