会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Electric motor control device
    • 电动机控制装置
    • US06873132B2
    • 2005-03-29
    • US10343955
    • 2001-08-03
    • Souki KakuHideki HondaRyuichi OguroHidekazu Miyagawa
    • Souki KakuHideki HondaRyuichi OguroHidekazu Miyagawa
    • G05B11/32B25J9/16G05B11/36G05B13/04H02P23/14H02P29/00H02P5/28
    • H02P23/14B25J9/163
    • Host control section 8 is provided with simulation model 8c for simulating the signal transmission characteristics of an electric motor control device. Host control section 8 performs an operation on the actual position command signal θref that is supplied from the host device in accordance with the simulation model, calculates the speed and position of the electric motor corresponding to the actual position command signal θref, and applies this speed and position as first simulation speed signal ωF and first simulation position signal θF, respectively, with each second control sampling period t2. Host control section 8 further generates a linear combination of θref−θF and ωF using, as combination coefficients, constants determined by parameters that characterize the simulation model, and supplies this linear combination as feedforward torque signal TFF for each second control sampling period t2. In this way, the occurrence of error between the actual position signal and the simulation position signal can be prevented even when the control sampling period of the feedforward operation differs from the control sample cycle of the feedback operation.
    • 主机控制部分8具有用于模拟电动机控制装置的信号传输特性的模拟模型8c。 主机控制部分8根据仿真模型对从主机设备提供的实际位置指令信号ttf进行操作,计算与实际位置指令信号相对应的电动机的速度和位置,并施加该速度 并分别与每个第二控制采样周期t2位置为第一模拟速度信号ωFF和第一模拟位置信号thetaF。 作为组合系数,主控制部分8进一步生成taref-θF和ωgaF的线性组合,该常数由表征仿真模型的参数确定,并且将该线性组合提供给每个第二控制采样周期t2的前馈转矩信号TFF。 以这种方式,即使当前馈操作的控制采样周期与反馈操作的控制采样周期不同时,也可以防止实际位置信号与模拟位置信号之间的误差的发生。
    • 4. 发明授权
    • Method of estimating initial pole position of permanent magnet brushless motor
    • 永磁式无刷电机初始磁极位置估算方法
    • US06184647B2
    • 2001-02-06
    • US09446268
    • 1999-12-20
    • Ryuichi OguroTakeshi Kamei
    • Ryuichi OguroTakeshi Kamei
    • H02P134
    • H02P6/18H02P6/20H02P6/28
    • In order to estimate a magnetic pole position of a permanent magnet type brushless motor, the following steps are conducted. A given &ggr; axis and a given &dgr; axis in an advanced from the &ggr; axis by an electrical angle of 90° are set. A closed-loop electric current control system in the &ggr; axis direction is formed while forming an open-loop electric current control system in the &dgr; axis direction. It is calculated an interference current generating in the &dgr; axis direction when a current command in the &ggr; axis direction is given as a stepwise alternating current command. The &ggr; axis is finely advanced by an angle of &Dgr;&thgr; when a sign of a product of an integral value of the interference current and a value of the current command in the &ggr; axis direction is positive. Alternatively, the &ggr; axis is finely delayed by an angle of &Dgr;&thgr; when the sign is negative. Thereby, the &ggr; axis is made accord with either a d axis as a true magnetic axis or with a -d axis advanced by 180° from the true magnetic axis.
    • 为了估计永磁式无刷电动机的磁极位置,进行以下步骤。 给定的伽马轴和从伽马轴推进电角度为90°的给定三角轴被设置。 在沿三角轴方向形成开环电流控制系统的同时形成伽马轴方向的闭环电流控制系统。 当以γ轴方向的电流指令作为逐步交流指令给出时,计算出沿三角轴方向产生的干扰电流。 当干涉电流的积分值和伽马轴方向的电流指令的值的乘积的符号为正时,伽马轴精确地前进一个DELTAtata的角度。 或者,当符号为负时,伽马轴被精确地延迟DELTAθ的角度。 因此,γ轴与d轴作为真磁轴或与从真磁轴推进180°的-d轴一致。
    • 6. 发明授权
    • Motor controller
    • 电机控制器
    • US06832127B1
    • 2004-12-14
    • US09787401
    • 2001-03-19
    • Shuang-Hui HaoRyuichi OguroHidekazu Miyagawa
    • Shuang-Hui HaoRyuichi OguroHidekazu Miyagawa
    • G06F1900
    • H02P23/14G05B13/042H02P23/0004
    • A motor controller comprising a machine system (12) having a load machine (1), a transmission mechanism (2) for transmitting power, and a motor for driving the load machine through the transmission mechanism; a simulator unit (11) having a numeric model (9) including the machine system, a simulation control section (19) for giving a torque command to the numeric model by using an observable quantity of state of the numeric model, and an evaluating section (10) for sending a control parameter to the simulation control section and an actual control unit; and the actual control unit (18) having an actual control section which receives an observable quantity of state of an actual system and has the same structure as that of the simulator unit and adapted to supply a torque signal to the motor serving as a drive source. Therefore the control gain of a motor controller can be automatically adjusted quickly and optimally.
    • 一种电动机控制器,包括具有负载机器(1)的机器系统(12),用于发送动力的变速机构(2)和用于通过变速机构驱动负载机械的电动机; 具有包括所述机器系统的数字模型(9)的模拟器单元(11),通过使用所述数值模型的状态的可观察量向所述数值模型提供转矩指令的模拟控制部(19),以及评估部 (10),用于向所述模拟控制部和实际控制单元发送控制参数; 并且实际控制单元(18)具有实际控制部分,该实际控制部分接收实际系统的可观察状态量并且具有与模拟器单元相同的结构,并且适于向作为驱动源的电动机提供转矩信号 。 因此,可以快速,最佳地自动调整电机控制器的控制增益。
    • 7. 发明授权
    • Method of controlling moving element of magnetic levitation and
transport system
    • 控制磁悬浮和运输系统移动元件的方法
    • US5359490A
    • 1994-10-25
    • US139886
    • 1993-10-22
    • Ryuichi Oguro
    • Ryuichi Oguro
    • B60L13/06B60L13/08B61B13/08H02N15/00
    • B61B13/08B60L13/08
    • A magnetic levitation and transport system has a plate-like moving element (SFT) which is moved by a linear motor disposed in a stator (STT). The moving element is moved vertically by first through fourth electromagnetic devices (MGV.sub.10 -MGV.sub.41), and fifth and sixth electromagnetic devices (MGH.sub.10 -MGH.sub.21) exert forces on the moving element in a horizontal direction perpendicular to the direction in which the moving element is moved. Gaps between the moving element and the electromagnetic devices are detected by gap sensors which produce gap data. In the vertical direction, for example, attractive force commands (f.sub.V1 -f.sub.V2) are produced from the outputs from a circuit for calculating the amount of feedback (10) which is supplied with the gap data (XV.sub.1 -XV.sub.4) and also with the output from a variable gain g.sub.V (l) generator (60) to which the position (l) of the center of gravity of the moving element is supplied. The attractive force commands are then linearized by linearizing circuits (71-74), and linearized outputs are applied to the electromagnetic devices. With this arrangement, the variable gains can be established by an analog circuit, and control gains in the respective control directions can be given independently of each other.
    • 磁悬浮和输送系统具有由设置在定子(STT)中的线性电动机移动的板状移动元件(SFT)。 移动元件由第一至第四电磁装置(MGV10-MGV41)垂直移动,第五和第六电磁装置(MGH10-MGH21)在垂直于移动元件移动方向的水平方向上对移动元件施加力 。 通过间隙传感器检测移动元件和电磁装置之间的间隙,产生间隙数据。 在垂直方向上,例如,从用于计算提供有间隙数据(XV1-XV4)的反馈量(10)的电路的输出以及输出端产生吸引力指令(fV1-fV2) 来自可变增益gV(l)发生器(60),移动元件的重心位置(l)被提供给可变增益gV(1)发生器60。 吸引力命令然后通过线性化电路(71-74)进行线性化,线性化输出被施加到电磁装置。 利用这种布置,可以通过模拟电路建立可变增益,并且可以彼此独立地给出各个控制方向上的控制增益。
    • 8. 发明授权
    • Positioning control method
    • 定位控制方法
    • US06975086B1
    • 2005-12-13
    • US09914849
    • 2000-03-02
    • Hideki HondaRyuichi OguroShuang-Hui Hao
    • Hideki HondaRyuichi OguroShuang-Hui Hao
    • G05B5/01G05B11/01
    • G05B5/01G05B2219/41122G05B2219/49176
    • A pre-compensator is provided based on a definition of abase vibration model having a motor transfer function 1 for generating motor displacement 12 from an input that is the sum of input torque and a table propelling force 10 multiplied with a reducer and Cartesian-to-polar coordinate transformation constant 14, a table transfer function 14 for multiplying a deviation 11 between an output that is the motor displacement multiplied with a reducer and polar-to-Cartesian coordinate transformation constant 2 and table displacement with a table-displacement-to-force conversion spring constant 3 to generate the table propelling force 10 and to output table displacement 7, and a base driving transfer function 5 for generating base displacement by multiplying base displacement 9 with a base-displacement-to-force conversion spring coefficient 6 and inputting the same with the table propelling force, table displacement 8 being generated from a difference between the table displacement and the base displacement.
    • 基于具有电动机传递函数1的电动机传递函数1的预先补偿器,该电动机传递函数1是从作为输入转矩之和的输入和与减速器相乘的表推进力10的笛卡尔乘数之和产生电动机位移12, 极坐标变换常数14,用于将作为与减速器相乘的电动机位移的输出与极坐标至笛卡尔坐标变换常数2的偏差11与表位移到力的表移位相乘的表传递函数14 转换弹簧常数3以产生台推进力10并输出工作台位移7;以及基座驱动传递函数5,用于通过将基座位移9与基座位移力转换弹簧系数6相乘来产生基座位移,并输入 与台面推进力相同,台面位移8由台面位移与之间的差异产生 基地位移。
    • 9. 发明授权
    • Method and device for controlling currents of synchronous motor
    • 控制同步电机电流的方法和装置
    • US06850030B2
    • 2005-02-01
    • US10482392
    • 2002-07-03
    • Souki KakuRyuichi Oguro
    • Souki KakuRyuichi Oguro
    • H02P6/00H02P6/08H02P21/00H02P1/24H02P7/36
    • H02P6/085H02P6/28H02P21/22
    • There are performed converting electric currents Iu, Iv, and Iw flowing through the synchronous motor into a d-axis actual current Idfb and a q-axis actual current Iqfb on rotational coordinate axes which rotate synchronously with a rotor magnetic flux vector, on the basis of an actual position θ of the rotor of the synchronous motor; estimating a d-axis simulated current Idob and a q-axis simulated current Iqob on the basis of the d-axis actual current Idfb, the q-axis actual current Iqfb, a d-axis actual voltage command Vdref, and a q-axis actual voltage command Vqref; generating a d-axis actual voltage command Vdref and a q-axis actual voltage command Vqref on the basis of a d-axis current command Idref, a q-axis current command Iqref, a d-axis simulated current Idob, and a q-axis simulated current Iqob; and converting the d-axis actual voltage command Vdref and the q-axis actual voltage command Vqref into actual voltage commands Vuref, Vvref, and Vwref on the basis of the actual position θ of a rotor of the synchronous motor. As a result, there can be provided a method and apparatus for controlling an electric current of a synchronous motor, which can provide a superior current response characteristic regardless of the influence of temperature.
    • 将基于同步电机的电流Iu,Iv,Iw转换为与转子磁通矢量同步旋转的坐标轴上的d轴实际电流Idfb和q轴实际电流Iqfb,基于 的同步电动机的转子的实际位置θ; 基于d轴实际电流Idfb,q轴实际电流Iqfb,d轴实际电压指令Vdref和q轴来估计d轴模拟电流Idob和q轴模拟电流Iqob 实际电压指令Vqref; 基于d轴电流指令Idref,q轴电流指令Iqref,d轴模拟电流Idob和q轴电流指令Idq,生成d轴实际电压指令Vdref和q轴实际电压指令Vqref。 轴模拟电流Iqob; 并且基于同步电动机的转子的实际位置θ将d轴实际电压指令Vdref和q轴实际电压指令Vqref转换成实际电压指令Vuref,Vvref和Vwref。 结果,可以提供一种用于控制同步电动机的电流的方法和装置,其可以提供优异的电流响应特性,而不管温度的影响。