会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Biomolecule-Based Electronic Device
    • 基于生物分子的电子设备
    • US20100270543A1
    • 2010-10-28
    • US12809646
    • 2008-04-17
    • Jeong-Woo ChoiJun-Hong MinByung-Keun OhHyun-Hee KimYoung-Jun Kim
    • Jeong-Woo ChoiJun-Hong MinByung-Keun OhHyun-Hee KimYoung-Jun Kim
    • H01L51/30
    • G11C13/0014B82Y10/00G11C13/0009G11C13/0019H01L51/0093H01L51/0591
    • The present invention relates to a biomolecule-based electronic device in which the biomolecule with redox potential is directly immobilized on the substrate. The present invention enables to excellently exhibit the capability of a protein-based bio-memory device in which it is preferable to use the substrate on which cysteine-introduced recombinant proteins are effectively immobilized and a self-assembled layer (SAM) is fabricated. It becomes realized that a redox potential is regulated using intrinsic redox potential of the protein dependent on applied voltage. The present invention provides a novel operating method in which three potentials are applied throughout four steps. The present invention has some advantages of fabricating a protein layer in a convenient manner and inducing electron transfer by fundamental electrochemical or electronic operation. The method of this invention is considered as a new concept in the senses that intrinsic electron transfer mechanisms induced by natural-occurring biomolecules are used to develop an information storage device.
    • 本发明涉及一种基于生物分子的电子器件,其中具有氧化还原电位的生物分子直接固定在基底上。 本发明能够优异地表现出蛋白质生物记忆装置的能力,其中优选使用其上有效固定半胱氨酸导入的重组蛋白质的底物和制造自组装层(SAM)。 实现使用依赖于施加电压的蛋白质的固有氧化还原电位来调节氧化还原电位。 本发明提供一种新的操作方法,其中三个电位通过四个步骤施加。 本发明具有以方便的方式制造蛋白质层并通过基本电化学或电子操作诱导电子转移的一些优点。 本发明的方法被认为是用天然存在的生物分子诱导的固有电子传递机制来开发信息存储装置的感觉的新概念。
    • 3. 发明授权
    • Sensing switch and detecting method using the same
    • 感应开关及使用其的检测方法
    • US07510865B2
    • 2009-03-31
    • US11347185
    • 2006-02-03
    • Kyu-tae YooJoon-ho KimJun-hong MinSung-ouk JungJi-na NamgoongKui-hyun KimJeo-young ShimKak Namkoong
    • Kyu-tae YooJoon-ho KimJun-hong MinSung-ouk JungJi-na NamgoongKui-hyun KimJeo-young ShimKak Namkoong
    • C12M1/34
    • G01N33/54373
    • Provided are a sensing switch and a sensing method using the same. The sensing switch includes: a substrate; a supporter on the substrate; a sensing plate that is connected to a side of the supporter and is in parallel with the substrate by a predetermined distance; a receptor binding region on an upper surface of an end portion of the sensing plate; an electric or magnetic field generation device that induces deflection of the sensing plate when a receptor bound to the receptor binding region is selectively bound to an electrically or magnetically active ligand; and a pair of switching electrodes that are separated by a predetermined distance and is connected when the sensing plate contacts the substrate due to the deflection of the sensing plate. A target material need not be labelled, a signal processing of a fluorescent or electrical detection signal using an analysis apparatus is not required, and a signal can be directly decoded by confirming whether a current flows through the switch.
    • 提供了一种感测开关和使用该感测开关的感测方法。 感测开关包括:基板; 底物上的支撑物; 感测板,其与所述支撑体的一侧连接并且与所述基板平行预定距离; 在感测板的端部的上表面上的受体结合区域; 当与受体结合区结合的受体选择性地结合到电或磁性活性配体时,引起感测板偏转的电场或磁场产生装置; 以及一对分离预定距离的开关电极,并且当感测板由于感测板的偏转而与基板接触时被连接。 目标材料不需要标注,不需要使用分析装置的荧光或电检测信号的信号处理,并且可以通过确认电流是否流过开关直接解码信号。
    • 5. 发明申请
    • Method of separating biomolecules using nanopore
    • 使用纳米孔分离生物分子的方法
    • US20060183112A1
    • 2006-08-17
    • US11335246
    • 2006-01-19
    • Jun-hong MinSu-hyeon KimIn-ho LeeKui-hyun KimSeung-yeon Yang
    • Jun-hong MinSu-hyeon KimIn-ho LeeKui-hyun KimSeung-yeon Yang
    • C12Q1/70C12Q1/68
    • G01N33/5438G01N33/48721
    • Provided is a method of separating particles, the method comprising: forming a first chamber and a second chamber separated by an interface with a pore, wherein the first and second chambers have electrodes with different polarities; placing particles to which a target biomolecule is bound from particles to which the target biomolecule is not bound in the first chamber; applying a voltage which has the same polarity as that of the target biomolecule to the electrode of the first chamber, and a voltage which has an opposite charge to that of the target biomolecule to the electrode of the second chamber; and translocating only the particles to which the target biomolecule is bound from the first chamber to the second chamber through the pore. Conventionally, the size of a pore is used to separate biomolecules. However, effective separation is difficult to achieve because the manufacture of a pore with a diameter of less than 10 nm, small enough to separate biomolecule, is not easy. Therefore, signal separation and data analysis must be required. However, in the present method, physical movement induced by the charge of biomolecules is used to effectively separate the biomolecules, thus obtaining a high signal to noise ratio. As a result, additional data analysis is not required.
    • 提供了一种分离颗粒的方法,该方法包括:形成由与孔的界面分隔开的第一室和第二室,其中第一和第二室具有不同极性的电极; 在第一室中放置靶生物分子所结合的颗粒与目标生物分子不结合的颗粒; 将具有与目标生物分子相同极性的电压施加到第一室的电极,以及将具有与靶生物分子相反的电荷的电压施加到第二室的电极; 并且仅将来自第一室的目标生物分子结合的颗粒通过孔转移到第二室。 通常,使用孔的大小来分离生物分子。 然而,由于直径小于10nm的孔的制造足够小以分离生物分子,所以难以实现有效的分离,这是不容易的。 因此,必须要求信号分离和数据分析。 然而,在本方法中,由生物分子的电荷引起的身体运动用于有效分离生物分子,从而获得高的信噪比。 因此,不需要额外的数据分析。