会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Planar membraneless microchannel fuel cell
    • 平面无膜微通道燃料电池
    • US07435503B2
    • 2008-10-14
    • US11150622
    • 2005-06-10
    • Jamie Lee CohenDavid James VolpeDaron A. WestlyAlexander PechenikHector D. Abruna
    • Jamie Lee CohenDavid James VolpeDaron A. WestlyAlexander PechenikHector D. Abruna
    • H01M8/04
    • H01M8/08H01M8/006H01M8/026H01M8/0289H01M8/04082H01M8/04186H01M8/083H01M8/086
    • A planar microfluidic membraneless flow cell. The design eliminates the need for a mechanical membrane, such as a polyelectrolyte membrane (PEM) in a fuel cell, by providing a flow channel in which laminar flow regimes exist in two fluids flowing in mutual contact to form a “virtual interface” in the flow channel. In the flow cell, diffusion at the interface is the only mode of mass transport between the two fluids. In a fuel cell embodiment, a planar design provides to large contact areas between the two streams, which are fuel and oxidant streams, and between each stream and a respective electrode. In some embodiments, silicon microchannels, of fixed length and variable width and height, have been used to generate power using formic acid as fuel and oxygen as oxidant. Power densities on the order of 180 μW/cm2 have been obtained using this planar design.
    • 平面微流体无膜流通池。 该设计消除了对燃料电池中的机械膜,例如聚电解质膜(PEM)的需要,通过提供流动通道,其中层流状态存在于相互接触的两个流体中以在相互接触中形成“虚拟界面” 流通道。 在流动池中,界面处的扩散是两种流体之间唯一的质量传递模式。 在燃料电池实施例中,平面设计提供两个流之间的大的接触区域,这两个物流是燃料和氧化剂流,并且在每个流和相应的电极之间。 在一些实施例中,具有固定长度和可变宽度和高度的硅微通道已经用于使用甲酸作为燃料和氧气作为氧化剂来产生功率。 使用这种平面设计已经获得了大约180μW/ cm 2的功率密度。
    • 10. 发明授权
    • Method of making submicrometer microelectrodes
    • 制备亚微米微电极的方法
    • US5185922A
    • 1993-02-16
    • US568852
    • 1990-08-17
    • Bradford D. PendleyHector D. Abruna
    • Bradford D. PendleyHector D. Abruna
    • C03B23/047G01N27/30
    • C03B23/0473G01N27/30Y10S65/06Y10T29/49117Y10T29/49204
    • Microelectrodes and methods for making the same are disclosed which have electrode tip diameter of less than 10 .mu.m. The microelectrodes include a tapered electrode wire sealed in, and surrounded by, a tapered insulator tube. In one preferred embodiment, an annealed platinum wire approximately 75 .mu.m in diameter is inserted in an insulator tube, such as a borosilicate pipette, having an inner diameter of approximatley 600 .mu.m. The pipette is heated to the softening temperature of borosilicate and drawn using a conventional pulling technique. As the inner diameter of the pipette draws down, it engages the annealed platinum wire and causes the wire to also draw down in diameter. Careful selection of the relative diameters of the pipette and the platinum wire ensure that the two will break at essentially the same time thereby forming a microelectrode having a platinum disk electrode of less than 10 .mu.m diameter. Other metals, including gold, copper, silver, rhodium, iridium, tungsten and molybdenum can be used for the electrode wire.
    • 公开了电极尖端直径小于10微米的微电极及其制造方法。 微电极包括密封在锥形绝缘管中并被锥形绝缘管包围的锥形电极线。 在一个优选实施例中,将直径约75μm的退火铂丝插入绝缘管中,例如硼硅酸盐移液管,内径约为600μm。 将移液管加热至硼硅酸盐的软化温度并使用常规的拉伸技术进行拉伸。 当吸管的内径下降时,它与退火的铂丝接合并使线也直径下降。 仔细选择移液管和铂丝的相对直径确保两者基本上同时断裂,从而形成具有小于10μm直径的铂盘电极的微电极。 其他金属,包括金,铜,银,铑,铱,钨和钼可用于电极线。