会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Method for elimination of contaminants prior to epitaxy
    • 在外延之前消除污染物的方法
    • US06514886B1
    • 2003-02-04
    • US09667660
    • 2000-09-22
    • Gregory D. U'Ren
    • Gregory D. U'Ren
    • H01L21469
    • H01L21/02046C30B25/02C30B29/52H01L21/31116Y10S438/906
    • According to the disclosed method, the surface of a semiconductor wafer is covered by a protective oxide. For example, the protective oxide can be silicon oxide and the semiconductor wafer can be a silicon wafer. The semiconductor wafer is then placed in a CVD reactor at a first temperature. For example, the first temperature can be approximately 650° C. Contaminants and the protective oxide are then removed from the surface of the semiconductor wafer at the first temperature. For example, contaminants and the protective oxide can be removed from the surface of a silicon wafer by using an etchant, such as Hydrogen Chloride (HCl), and a precursor, such as Dichlorosilane (SiH2Cl2 or “DCS”), in appropriate proportions. While contaminants and the protective oxide are being removed by the action of HCl and DCS, any silicon being removed from the surface of the silicon wafer, is being replenished so that there is no net change in the amount of silicon on the surface of the wafer. After removal of the contaminants and the protective oxide, epitaxial growth is performed on the surface of the semiconductor wafer at the first temperature. For example, silicon germanium epitaxial growth can be performed on the surface of a silicon wafer. A structure comprising an epitaxially grown region can be fabricated according to the disclosed method. For example, a silicon-germanium base region of a heterojunction bipolar transistor can be formed on a silicon surface prepared according to the disclosed method.
    • 根据所公开的方法,半导体晶片的表面被保护氧化物覆盖。 例如,保护氧化物可以是氧化硅,半导体晶片可以是硅晶片。 然后将半导体晶片置于第一温度的CVD反应器中。 例如,第一温度可以是约650℃。然后在第一温度下将污染物和保护性氧化物从半导体晶片的表面去除。 例如,可以通过使用诸如氯化氢(HCl)的蚀刻剂和诸如二氯硅烷(SiH 2 Cl 2或“DCS”)的前体以适当比例从硅晶片的表面除去污染物和保护性氧化物。 虽然通过HCl和DCS的作用去除污染物和保护性氧化物,但是从硅晶片的表面除去的任何硅被补充,使得晶片表面上的硅量没有净变化 。 在除去污染物和保护氧化物之后,在第一温度下对半导体晶片的表面进行外延生长。 例如,可以在硅晶片的表面上进行硅锗外延生长。 可以根据所公开的方法制造包含外延生长区的结构。 例如,可以在根据所公开的方法制备的硅表面上形成异质结双极晶体管的硅 - 锗基区。
    • 3. 发明授权
    • Method for independent control of polycrystalline silicon-germanium in a silicon-germanium HBT and related structure
    • 硅锗HBT及相关结构中多晶硅锗的独立控制方法
    • US06365479B1
    • 2002-04-02
    • US09667274
    • 2000-09-22
    • Gregory D. U'Ren
    • Gregory D. U'Ren
    • H01L21331
    • H01L29/66242H01L21/02381H01L21/0245H01L21/02532H01L21/0262
    • In one embodiment a precursor gas for growing a polycrystalline silicon-germanium region and a single crystal silicon-germanium region is supplied. The precursor gas can be, for example, GeH4. The polycrystalline silicon-germanium region can be, for example, a base contact in a heterojunction bipolar transistor while the single crystal silicon-germanium region can be, for example, a base in the heterojunction bipolar transistor. The polycrystalline silicon-germanium region can be grown in a mass controlled mode at a certain temperature and a certain pressure of the precursor gas while the single crystal silicon-germanium region can be grown, concurrently, in a kinetically controlled mode at the same temperature and the same pressure of the precursor gas. The disclosed embodiments result in controlling the growth of the polycrystalline silicon-germanium independent of the growth of the single crystal silicon-germanium.
    • 在一个实施方案中,提供用于生长多晶硅 - 锗区和单晶硅 - 锗区的前体气体。 前体气体可以是例如GeH 4。 多晶硅锗区可以是例如异质结双极晶体管中的基极接触,而单晶硅 - 锗区可以是例如异质结双极晶体管中的基极。 多晶硅锗区域可以在一定温度和一定压力的前体气体的质量控制模式下生长,同时可以在相同温度的动态控制模式下同时生长单晶硅 - 锗区域, 相同的前体气体压力。 所公开的实施例导致独立于单晶硅 - 锗的生长来控制多晶硅 - 锗的生长。
    • 5. 发明授权
    • Transistor emitter having alternating undoped and doped layers
    • 具有交替未掺杂和掺杂层的晶体管发射极
    • US07078744B1
    • 2006-07-18
    • US10888406
    • 2004-07-10
    • Gregory D. U'Ren
    • Gregory D. U'Ren
    • H01L31/0328
    • H01L29/66242H01L29/0804
    • A disclosed embodiment is a method for fabricating an emitter structure, comprising a step of conformally depositing an undoped polysilicon layer in an emitter window opening and over a base. Next, a doped polysilicon layer is non-conformally deposited over the undoped layer. Thereafter, the steps of conformally depositing an undoped polysilicon layer and non-conformally depositing a doped polysilicon layer are repeated until the emitter window opening is filled. The method can further comprise a step of activating dopants. In another embodiment, an emitter structure is fabricated according to the above method.
    • 所公开的实施例是一种用于制造发射极结构的方法,包括在发射器窗口开口和基极上共形沉积未掺杂的多晶硅层的步骤。 接下来,掺杂多晶硅层被非共面沉积在未掺杂的层上。 此后,重复保形沉积未掺杂多晶硅层和非保形沉积掺杂多晶硅层的步骤,直到填充发射器窗口。 该方法还可以包括活化掺杂剂的步骤。 在另一个实施例中,根据上述方法制造发射极结构。
    • 6. 发明授权
    • Independent control of polycrystalline silicon-germanium in an HBT and related structure
    • 独立控制HBT及相关结构中的多晶硅锗
    • US07183627B2
    • 2007-02-27
    • US10054438
    • 2002-01-22
    • Gregory D. U'ren
    • Gregory D. U'ren
    • H01L27/082
    • H01L29/66242H01L21/02381H01L21/0245H01L21/02532H01L21/0262
    • In one embodiment a precursor gas for growing a polycrystalline silicon-germanium region and a single crystal silicon-germanium region is supplied. The precursor gas can be, for example, GeH4. The polycrystalline silicon-germanium region can be, for example, a base contact in a heterojunction bipolar transistor while the single crystal silicon-germanium region can be, for example, a base in the heterojunction bipolar transistor. The polycrystalline silicon-germanium region can be grown in a mass controlled mode at a certain temperature and a certain pressure of the precursor gas while the single crystal silicon-germanium region can be grown, concurrently, in a kinetically controlled mode at the same temperature and the same pressure of the precursor gas. The disclosed embodiments result in controlling the growth of the polycrystalline silicon-germanium independent of the growth of the single crystal silicon-germanium.
    • 在一个实施方案中,提供用于生长多晶硅 - 锗区和单晶硅 - 锗区的前体气体。 前体气体可以是例如GeH 4 N 4。 多晶硅锗区可以是例如异质结双极晶体管中的基极接触,而单晶硅 - 锗区可以是例如异质结双极晶体管中的基极。 多晶硅锗区域可以在一定温度和一定压力的前体气体的质量控制模式下生长,同时可以在相同温度的动态控制模式下同时生长单晶硅 - 锗区域, 相同的前体气体压力。 所公开的实施例导致独立于单晶硅 - 锗的生长来控制多晶硅 - 锗的生长。
    • 7. 发明授权
    • Technique for reducing contaminants in fabrication of semiconductor wafers
    • 减少半导体晶片制造中污染物的技术
    • US07064073B1
    • 2006-06-20
    • US10434961
    • 2003-05-09
    • Gregory D. U'ren
    • Gregory D. U'ren
    • H01L21/302
    • C23C16/4405
    • According to one embodiment, a method for reducing contaminants in a reactor chamber is disclosed where the method comprises a step of etching the reactor chamber, which can comprise, for example, a dry etch process performed with hydrogen and HCL. Next, the reactor chamber is baked, which can comprise, for example, baking with hydrogen. Thereafter, an undoped semiconductor layer, such as an undoped silicon layer, is deposited in the reactor chamber to form a sacrificial semiconductor layer, for example, a sacrificial silicon layer. Then, the sacrificial semiconductor layer, for example, the sacrificial silicon layer, is removed from the reactor chamber. The removal step can comprise, for example, a dry etch process performed with HCL. In another embodiment, a wafer is fabricated in a reactor chamber that is substantially free of contaminants due to the implementation of the above method.
    • 根据一个实施例,公开了一种用于减少反应器室中的污染物的方法,其中该方法包括蚀刻反应器室的步骤,其可以包括例如用氢和HCL进行的干蚀刻工艺。 接下来,将反应器室烘烤,其可以包括例如用氢气烘烤。 此后,将未掺杂的半导体层,例如未掺杂的硅层沉积在反应器室中以形成牺牲半导体层,例如牺牲硅层。 然后,将牺牲半导体层,例如牺牲硅层从反应器室中移除。 去除步骤可以包括例如用HCL进行的干蚀刻工艺。 在另一个实施方案中,由于实施上述方法,晶片被制造在基本上不含污染物的反应器室中。
    • 8. 发明授权
    • SiGe layer having small poly grains
    • SiGe层具有小的多晶粒
    • US07132700B1
    • 2006-11-07
    • US10915797
    • 2004-08-11
    • Gregory D. U'RenSy Vo
    • Gregory D. U'RenSy Vo
    • H01L31/072
    • H01L21/8249H01L21/0237H01L21/0245H01L21/02532H01L21/0262H01L21/02661
    • A disclosed embodiment is a method for fabricating a structure in a semiconductor die, the method comprising depositing a silicon buffer layer over a single crystalline region and at least one isolation region at a first pressure, where the silicon buffer layer is continuous, i.e. comprises small poly grains, over the at least one isolation region. The method further includes forming a silicon germanium layer over the silicon buffer layer at a second pressure, where the silicon germanium layer is also continuous, i.e. comprises small poly grains, over the at least one isolation region. In one embodiment, the first pressure is less than the second pressure. In other embodiments, a structure is fabricated according to the above method.
    • 所公开的实施例是用于在半导体管芯中制造结构的方法,所述方法包括在第一压力下在单个晶体区域和至少一个隔离区域上沉积硅缓冲层,其中硅缓冲层是连续的,即包括小的 多晶粒,在至少一个隔离区域上。 该方法还包括在第二压力下在硅缓冲层上形成硅锗层,其中硅锗层在至少一个隔离区域上也是连续的,即包含小的多晶粒。 在一个实施例中,第一压力小于第二压力。 在其他实施例中,根据上述方法制造结构。
    • 9. 发明授权
    • Method for fabrication of emitter of a transistor and related structure
    • 晶体管发射极的制造方法及相关结构
    • US06797578B1
    • 2004-09-28
    • US10437723
    • 2003-05-13
    • Gregory D. U'Ren
    • Gregory D. U'Ren
    • H01L21331
    • H01L29/66242H01L29/0804
    • A disclosed embodiment is a method for fabricating an emitter structure, comprising a step of conformally depositing an undoped polysilicon layer in an emitter window opening and over a base. Next, a doped polysilicon layer is non-conformally deposited over the undoped layer. Thereafter, the steps of conformally depositing an undoped polysilicon layer and non-conformally depositing a doped polysilicon layer are repeated until the emitter window opening is filled. The method can further comprise a step of activating dopants. In another embodiment, an emitter structure is fabricated according to the above method.
    • 所公开的实施例是一种用于制造发射极结构的方法,包括在发射器窗口开口和基极上共形沉积未掺杂的多晶硅层的步骤。 接下来,掺杂多晶硅层被非共面沉积在未掺杂的层上。 此后,重复保形沉积未掺杂多晶硅层和非保形沉积掺杂多晶硅层的步骤,直到填充发射器窗口。 该方法还可以包括活化掺杂剂的步骤。 在另一个实施例中,根据上述方法制造发射极结构。
    • 10. 发明授权
    • Elimination of contaminants prior to epitaxy and related structure
    • 在外延和相关结构之前消除污染物
    • US06580104B1
    • 2003-06-17
    • US10114749
    • 2002-04-01
    • Gregory D. U'Ren
    • Gregory D. U'Ren
    • H01L2710
    • H01L21/02046C30B25/02C30B29/52H01L21/31116Y10S438/906
    • According to the disclosed method, the surface of a semiconductor wafer is covered by a protective oxide. The semiconductor wafer is then placed in a CVD reactor at a first temperature. Contaminants and the protective oxide are then removed from the surface of the semiconductor wafer at the first temperature. While contaminants and the protective oxide are being removed by the action of HCl and DCS, any silicon being removed from the surface of the silicon wafer, is being replenished so that there is no net change in the amount of silicon on the surface of the water. After removal of the contaminants and the protective oxide, epitaxial growth is performed on the surface of the semiconductor wafer at the first temperature. A structure comprising an epitaxially grown region can be fabricated according to the disclosed method.
    • 根据所公开的方法,半导体晶片的表面被保护氧化物覆盖。 然后将半导体晶片置于第一温度的CVD反应器中。 然后在第一温度下从半导体晶片的表面除去污染物和保护性氧化物。 虽然通过HCl和DCS的作用去除污染物和保护性氧化物,但是从硅晶片的表面除去的任何硅被补充,使得水的表面上的硅量没有净变化 。 在除去污染物和保护氧化物之后,在第一温度下对半导体晶片的表面进行外延生长。 可以根据所公开的方法制造包含外延生长区的结构。