会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 62. 发明申请
    • BULK SUBSTRATE FET INTEGRATED ON CMOS SOI
    • 集成在CMOS SOI上的基极FET
    • US20110163383A1
    • 2011-07-07
    • US12683456
    • 2010-01-07
    • Anthony I. ChouArvind KumarShreesh NarasimhaNing SuHuiling Shang
    • Anthony I. ChouArvind KumarShreesh NarasimhaNing SuHuiling Shang
    • H01L27/12H01L21/86
    • H01L27/1207H01L21/84
    • An integrated circuit is provided that integrates an bulk FET and an SOI FET on the same chip, where the bulk FET includes a gate conductor over a gate oxide formed over a bulk substrate, where the gate dielectric of the bulk FET has the same thickness and is substantially coplanar with the buried insulating layer of the SOI FET. In a preferred embodiment, the bulk FET is formed from an SOI wafer by forming bulk contact trenches through the SOI layer and the buried insulating layer of the SOI wafer adjacent an active region of the SOI layer in a designated bulk device region. The active region of the SOI layer adjacent the bulk contact trenches forms the gate conductor of the bulk FET which overlies a portion of the underlying buried insulating layer, which forms the gate dielectric of the bulk FET.
    • 提供了一种集成电路,其将同一芯片上的体FET和SOI FET集成在一起,其中,本体FET包括在大块衬底上形成的栅极氧化物上的栅极导体,其中本体FET的栅极电介质具有相同的厚度, 与SOI FET的掩埋绝缘层基本共面。 在优选实施例中,通过在指定的大容量器件区域中与SOI层的有源区相邻的SOI层和SOI晶片的掩埋绝缘层形成体接触沟槽,从SOI晶片形成本体FET。 邻近体接触沟槽的SOI层的有源区域形成体FET的栅极导体,其覆盖形成本体FET的栅极电介质的下层掩埋绝缘层的一部分。
    • 63. 发明申请
    • METHOD OF CREATING ASYMMETRIC FIELD-EFFECT-TRANSISTORS
    • 创建不对称场效应晶体管的方法
    • US20100330763A1
    • 2010-12-30
    • US12493549
    • 2009-06-29
    • Gregory G. FreemanShreesh NarasimhaNing SuHasan M. NayfehNivo RovedoWerner A. RauschJian Yu
    • Gregory G. FreemanShreesh NarasimhaNing SuHasan M. NayfehNivo RovedoWerner A. RauschJian Yu
    • H01L21/336
    • H01L21/823425H01L21/26586H01L21/823412H01L29/66492H01L29/66659
    • The present invention provides a method of forming asymmetric field-effect-transistors. The method includes forming at least a first and a second gate-mask stack on top of a semiconductor substrate, wherein the first and second gate-mask stacks include at least, respectively, a first and a second gate conductor of a first and a second transistor and have, respectively, a top surface, a first side, and a second side with the second side being opposite to the first side; performing a first halo implantation from the first side of the first and second gate-mask stacks at a first angle while applying the first gate-mask stack in preventing the first halo implantation from reaching a first source/drain region of the second transistor, wherein the first angle is equal to or larger than a predetermined value; and performing a second halo implantation from the second side of the first and second gate-mask stacks at a second angle, thereby creating halo implant in a second source/drain region of the second transistor, wherein the first and second angles are measured against a normal to the substrate.
    • 本发明提供了形成非对称场效应晶体管的方法。 该方法包括在半导体衬底的顶部上形成至少第一和第二栅极掩模叠层,其中第一和第二栅极掩模叠层至少分别包括第一和第二栅极掩模叠层的第一和第二栅极导体 分别具有顶表面,第一侧和第二侧,第二侧与第一侧相对; 以第一角度从第一和第二栅极掩模叠层的第一侧进行第一光晕注入,同时施加第一栅极掩模叠层以防止第一光晕注入到达第二晶体管的第一源极/漏极区域,其中 第一角度等于或大于预定值; 以及以第二角度从所述第一和第二栅极掩模叠层的第二侧执行第二光晕注入,从而在所述第二晶体管的第二源极/漏极区域中产生晕轮注入,其中所述第一和第二角度是针对 与基底垂直。
    • 64. 发明授权
    • Field effect transistor with reduced shallow trench isolation induced leakage current
    • 场效应晶体管减少浅沟槽隔离引起的漏电流
    • US07804140B2
    • 2010-09-28
    • US12041967
    • 2008-03-04
    • Leland ChangAnthony I. ChouShreesh NarasimhaJeffrey W. Sleight
    • Leland ChangAnthony I. ChouShreesh NarasimhaJeffrey W. Sleight
    • H01L27/088
    • H01L29/4238H01L29/7833
    • Edges of source and drain regions along the direction of a channel of a field effect transistor are formed within an active area offset from the boundary between the active area and a shallow trench isolation structure. Such a structure may be manufactured by forming a gate electrode structure that overlies the boundary so that edges of the source and drain regions are self aligned to the edges of the gate electrode structure on the active area side of the boundary. Unnecessary portions of the gate electrode that does not overlie the source and drain regions may be removed to reduce parasitic capacitance. Shallow trench isolation edge current is eliminated since the semiconductor regions in the current path of the field effect transistor are offset from the boundary between the active area and the shallow trench isolation structure.
    • 沿场效应晶体管的沟道方向的源极和漏极区域的边缘形成在与有源区域和浅沟槽隔离结构之间的边界偏移的有效区域内。 可以通过形成覆盖边界的栅电极结构来制造这种结构,使得源区和漏区的边缘与边界的有源区域侧上的栅电极结构的边缘自对准。 可以去除不覆盖源极和漏极区域的栅电极的不必要部分以减小寄生电容。 由于场效应晶体管的电流路径中的半导体区域偏离有源区和浅沟槽隔离结构之间的边界,因此消除了浅沟槽隔离边缘电流。
    • 67. 发明申请
    • METHODOLOGY FOR IMPROVING DEVICE PERFORMANCE PREDICTION FROM EFFECTS OF ACTIVE AREA CORNER ROUNDING
    • 改善活动区域拐角影响装置性能预测的方法
    • US20090178012A1
    • 2009-07-09
    • US11971015
    • 2008-01-08
    • Dureseti ChidambarraoGerald M. DavidsonPaul A. HydeJudith H. McCullenShreesh Narasimha
    • Dureseti ChidambarraoGerald M. DavidsonPaul A. HydeJudith H. McCullenShreesh Narasimha
    • G06F17/50
    • G06F17/5036
    • A system and method for modeling a semiconductor transistor device structure having a conductive line feature of a designed length connected to a gate of a transistor device in a circuit to be modeled, the transistor including an active device (RX) area over which the gate is formed and over which the conductive line feature extends. The method includes providing an analytical model representation including a function for modeling a lithographic flare effect impacting the active device area width; and, from the modeling function, relating an effective change in active device area width (deltaW adder) as a function of a distance from a defined edge of the RX area. Then, transistor model parameter values in a transistor compact model for the device are updated to include deltaW adder values to be added to a built-in deltaW value. A netlist used in a simulation includes the deltaW adder values to more accurately describe the characteristics of the transistor device being modeled including modeling of lithographic corner rounding effect on transistor device parametrics.
    • 一种用于建模半导体晶体管器件结构的系统和方法,所述半导体晶体管器件结构具有设计长度的导线特征,所述导线特征与待建模的电路中的晶体管器件的栅极连接,所述晶体管包括有源器件(RX) 形成并且其上延伸有导线特征。 该方法包括提供分析模型表示,其包括用于建模影响有源器件区域宽度的光刻火炬效应的功能; 并且从建模功能将有源器件区域宽度(deltaW加法器)的有效变化与距离RX区域的限定边缘的距离的函数相关联。 然后,器件的晶体管紧凑型模型中的晶体管模型参数值被更新为包括要添加到内置deltaW值的ΔW加法器值。 在模拟中使用的网表包括deltaW加法器值,以更精确地描述被建模的晶体管器件的特性,包括对晶体管器件参数的光刻拐角舍入效应的建模。
    • 69. 发明授权
    • High-performance CMOS devices on hybrid crystal oriented substrates
    • 混合晶体取向基板上的高性能CMOS器件
    • US07329923B2
    • 2008-02-12
    • US10250241
    • 2003-06-17
    • Bruce B. DorisKathryn W. GuariniMeikei IeongShreesh NarasimhaKern RimJeffrey W. SleightMin Yang
    • Bruce B. DorisKathryn W. GuariniMeikei IeongShreesh NarasimhaKern RimJeffrey W. SleightMin Yang
    • H01L27/01
    • H01L21/76275H01L21/823807H01L21/84
    • An integrated semiconductor structure containing at least one device formed upon a first crystallographic surface that is optimal for that device, while another device is formed upon a second different crystallographic surface that is optimal for the other device is provided. The method of forming the integrated structure includes providing a bonded substrate including at least a first semiconductor layer of a first crystallographic orientation and a second semiconductor layer of a second different crystallographic orientation. A portion of the bonded substrate is protected to define a first device area, while another portion of the bonded substrate is unprotected. The unprotected portion of the bonded substrate is then etched to expose a surface of the second semiconductor layer and a semiconductor material is regrown on the exposed surface. Following planarization, a first semiconductor device is formed in the first device region and a second semiconductor device is formed on the regrown material.
    • 提供包含至少一个器件的集成半导体结构,所述器件形成在对于该器件最佳的第一晶体表面上,而另一器件形成在对于另一器件最佳的第二不同晶体表面上。 形成集成结构的方法包括提供包括至少第一晶体取向的第一半导体层和第二不同晶体取向的第二半导体层的键合衬底。 键合衬底的一部分被保护以限定第一器件区域,而键合衬底的另一部分是未受保护的。 然后蚀刻键合衬底的未保护部分以暴露第二半导体层的表面,并将半导体材料重新生长在暴露表面上。 在平坦化之后,在第一器件区域中形成第一半导体器件,并且在再生长材料上形成第二半导体器件。