会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 51. 发明授权
    • Method for producing a single crystal and silicon single crystal wafer
    • 单晶和硅单晶晶片的制造方法
    • US07326395B2
    • 2008-02-05
    • US10568186
    • 2004-08-13
    • Izumi FusegawaNobuaki MitamuraTakahiro Yanagimachi
    • Izumi FusegawaNobuaki MitamuraTakahiro Yanagimachi
    • C01B33/26
    • C30B15/20C30B29/06Y10T117/1068
    • The present invention is a method for producing a single crystal in accordance with Czochralski method by flowing an inert gas downward in a chamber 1 of a single crystal-pulling apparatus 11 and surrounding a single crystal 3 pulled from a raw material melt 2 with a gas flow-guide cylinder 4, wherein when a single crystal within N region outside OSF region generated in a ring shape in the radial direction of the single crystal is pulled, the single crystal within N region is pulled in a condition that flow amount of the inert gas between the single crystal and the gas flow-guide cylinder is 0.6 D(L/min) or more and pressure in the chamber is 0.6 D(hPa) or less, in which D (mm) is a diameter of the single crystal to be pulled. It is preferable that there is used the gas flow-guide cylinder that Fe concentration is 0.05 ppm or less, at least, in a surface thereof. Thereby, there is provided a method for producing a single crystal, wherein in the case that a single crystal is produced by an apparatus having a gas flow-guide cylinder in accordance with CZ method, the single crystal has low defect density and Fe concentration can be suppressed to be 1×1010 atoms/cm3 or less even in a peripheral part thereof.
    • 本发明是一种根据切克劳斯基法制造单晶的方法,该方法是使惰性气体在单晶拉制装置11的室1中向下流动,并围绕从原料熔体2拉出的单晶3与气体 流动引导圆筒4,其中当拉伸在单晶体的径向方向上以环形产生的OSF区域外的N区域内的单晶时,N区域内的单晶在惰性流动量的条件下被拉 单晶和气体导流筒之间的气体为0.6D(L / min)以上,室内的压力为0.6D(hPa)以下,其中D(mm)为单晶直径 被拉。 至少在其表面中优选使用气体导向气缸Fe浓度为0.05ppm以下。 因此,提供了一种单晶的制造方法,其中,在通过具有根据CZ法的气体导向筒的装置制造单晶的情况下,单晶的缺陷密度低,Fe浓度可以 即使在其周边部分被抑制为1×10 10原子/ cm 3以下。
    • 52. 发明授权
    • Silicon single crystal wafer, an epitaxial wafer and a method for producing a silicon single crystal
    • 硅单晶晶片,外延晶片和硅单晶的制造方法
    • US07294196B2
    • 2007-11-13
    • US10512470
    • 2003-05-07
    • Masahiro SakuradaNobuaki MitamuraIzumi FusegawaTomohiko Ohta
    • Masahiro SakuradaNobuaki MitamuraIzumi FusegawaTomohiko Ohta
    • C30B15/20
    • C30B29/06C30B15/14C30B15/203
    • In a method for producing a silicon single crystal by Czochralski method, the single crystal is grown with controlling a growth rate between a growth rate at a boundary where a defect region detected by Cu deposition remaining after disappearance of OSF ring disappears when gradually decreasing a growth rate of silicon single crystal during pulling and a growth rate at a boundary where a high oxygen precipitation Nv region having a density of BMDs of 1×107 numbers/cm3 or more and/or a wafer lifetime of 30 μsec or less after oxygen precipitation treatment disappears when gradually decreasing the growth rate further. Thereby, there is provided a silicon single crystal which does not belong to any of V region rich in vacancy, OSF region and I region rich in interstitial silicon, and has excellent electrical characteristics and gettering capability, so that yield of devices can be surely improved, and also an epitaxial wafer.
    • 在通过Czochralski法制造单晶硅的方法中,通过控制在逐渐减小生长时OSF环消失后残留的Cu沉积检测到的缺陷区域的边界处的生长速度之间的生长速率生长单晶 拉伸时的硅单晶速率和BMD密度为1×10 7 / cm 3以上的高氧沉淀Nv区域的边界处的生长速度,以及 /或在氧沉淀处理后30微米或更小的晶片寿命在进一步降低生长速率时消失。 由此,提供了不属于富含空隙的V区,OSF区和富含间隙硅的I区的任何一种的硅单晶,并且具有优异的电特性和吸杂能力,从而可以可靠地提高器件的产量 ,以及外延晶片。
    • 53. 发明授权
    • SOI wafer and a method for producing an SOI wafer
    • SOI晶片和SOI晶片的制造方法
    • US07129123B2
    • 2006-10-31
    • US10500580
    • 2003-10-24
    • Masahiro SakuradaNobuaki MitamuraIzumi FusegawaTomohiko Ohta
    • Masahiro SakuradaNobuaki MitamuraIzumi FusegawaTomohiko Ohta
    • H01L21/84H01L31/36C30B15/20
    • H01L21/76254C30B29/06C30B33/005C30B33/04C30B33/06C30B33/10
    • In a method for producing an SOI wafer comprising steps of implanting ions from a bond wafer surface to form an ion-implanted layer inside the wafer, bonding the ion-implanted bond wafer surface and a surface of a base wafer via an oxide film or directly, and forming an SOI wafer by delaminating by heat treatment a part of the bond wafer at the ion-implanted layer, the bond wafer is a silicon wafer that consists of a silicon single crystal grown by Czochralski method, that is occupied by N region outside OSF generated in a ring shape and that has no defect region detected by Cu deposition method. Thereby, even an extremely thin SOI layer having a thickness of 200 nm or less, can provide an SOI wafer that has an excellent electric property without micro pits caused by acid cleaning, and can be produced without increasing the number of processes.
    • 在制造SOI晶片的方法中,包括从接合晶片表面注入离子以在晶片内部形成离子注入层的步骤,通过氧化膜或直接键合离子注入的接合晶片表面和基底晶片的表面 ,并且通过在离子注入层处热处理接合晶片的一部分来形成SOI晶片,接合晶片是由通过Czochralski方法生长的硅单晶组成的硅晶片,其被N区域外部占据 OSF以环形形成,并且没有通过Cu沉积法检测到缺陷区域。 因此,即使是厚度为200nm以下的极薄的SOI层也能够提供具有优异的电性能的SOI晶片,而不会产生由酸清洗引起的微凹坑,并且可以在不增加工艺数的情况下制造。
    • 55. 发明申请
    • Soi wafer and production method therefor
    • Soi晶圆及其生产方法
    • US20060113594A1
    • 2006-06-01
    • US10542376
    • 2004-01-22
    • Masahiro SakuradaNobuaki MitamuraIzumi Fusegawa
    • Masahiro SakuradaNobuaki MitamuraIzumi Fusegawa
    • H01L27/12
    • C30B29/06C30B15/203H01L21/76251
    • An SOI wafer in which a base wafer and a bond wafer respectively consisting of silicon single crystal are bonded via an oxide film, and then the bond wafer is thinned to form a silicon active layer, wherein the base wafer is formed of silicon single crystal grown by Czochralski method, and the whole surface of the base wafer is within N region outside OSF region and doesn't include a defect region detected by Cu deposition method, or the whole surface of the base wafer is within a region outside OSF region, doesn't include a defect region detected by Cu deposition method, and includes I region containing dislocation cluster due to interstitial silicon. Thereby, there is provided an SOI wafer that retains high insulating properties and has an excellent electrical reliability in device fabrication even in the case of forming an extremely thin interlevel dielectric oxide film with, for example, a thickness of 100 nm or less.
    • 其中分别由硅单晶构成的基底晶片和接合晶片通过氧化膜结合的SOI晶片,然后将接合晶片变薄以形成硅有源层,其中,基底晶片由单晶硅单晶 通过切克劳斯基法,基底晶片的整个表面在OSF区域外的N区域内,并且不包括通过Cu沉积法检测的缺陷区域,或者基底晶片的整个表面在OSF区域外的区域内, 不包括通过Cu沉积法检测的缺陷区域,并且包括由于间隙硅而含有位错簇的I区域。 由此,提供了即使在形成例如厚度为100nm以下的极薄的层间电介质氧化膜的情况下,也能够在器件制造中保持高绝缘性且具有优异的电可靠性的SOI晶片。
    • 56. 发明授权
    • Silicon single crystal wafer and method for manufacturing the same
    • 硅单晶晶片及其制造方法
    • US06893499B2
    • 2005-05-17
    • US10312921
    • 2001-06-28
    • Izumi FusegawaKoji KitagawaRyoji HoshiMasahiro SakuradaTomohiko Ohta
    • Izumi FusegawaKoji KitagawaRyoji HoshiMasahiro SakuradaTomohiko Ohta
    • C30B15/00C30B15/20
    • C30B29/06C30B15/203
    • According to the present invention, there is disclosed a silicon single crystal wafer grown according to the CZ method which is a wafer having a diameter of 200 mm or more produced from a single crystal grown at a growth rate of 0.5 mm/min or more without doping except for a dopant for controlling resistance, wherein neither an octahedral void defect due to vacancies nor a dislocation cluster due to interstitial silicons exists as a grown-in defect, and a method for producing it. There can be provided a high quality silicon single crystal wafer having a large diameter wherein a silicon single crystal in which both of octahedral void defects and dislocation clusters which are growth defects are substantially eliminated is grown at higher rate compared with the conventional method by the usual CZ method, and furthermore by controlling a concentrations of interstitial oxygen in the crystal to be low, a precipitation amount is lowered and ununiformity of BMD in a plane of the wafer is improved, and provided a method for producing it.
    • 根据本发明,公开了一种根据CZ方法生长的硅单晶晶片,其是由以0.5mm / min以上的生长速度生长的单晶产生的直径为200mm以上的晶片的晶片,没有 除了用于控制电阻的掺杂剂之外的掺杂,其中由于间隙硅而由空位引起的八面体空隙缺陷和位错簇都不作为生长缺陷而存在,以及其制造方法。 可以提供具有大直径的高质量硅单晶晶片,其中以常规方法与常规方法相比,以更高的速率生长其中八面体空隙缺陷和作为生长缺陷的位错簇基本上消除的硅单晶 CZ法,另外通过将晶体中的间隙氧的浓度控制得较低,降低析出量,提高晶片的平面内的BMD的不均匀性,并提供其制造方法。
    • 59. 发明授权
    • Method and apparatus for production of single crystal
    • 用于生产单晶的方法和装置
    • US5851283A
    • 1998-12-22
    • US770499
    • 1996-12-20
    • Ryouji HoshiMasashi SonokawaIzumi FusegawaTomohiko Ohta
    • Ryouji HoshiMasashi SonokawaIzumi FusegawaTomohiko Ohta
    • C30B15/00C30B15/30C30B29/06C30B33/04C30B15/22
    • C30B29/06C30B15/305Y10S117/917
    • A single crystal production apparatus based on an HMCZ method for production a large-diametered single crystal having a uniform microscopic oxygen concentration distribution in its crystal growth direction to thereby provide a wafer having a high in-plane uniformity of oxygen concentration distribution. In the single crystal production apparatus based on the HMCZ method, when B denotes a vertical position of the bottom surface of a melt within a crucible and L denotes the depth of the melt at the time of starting crystal pulling operation, a vertical position of the coil central axis Cc of superconducting electromagnets 12 and 15 is controlled to be a proper value included in a range from a position below the position B by {(1/3).times.L} to a position above the position B by {(1/3).times.L} to pull the single crystal. Thereby the intensity of a magnetic field applied to the melt in the vicinity of the interface of the crystal growth within the crucible is weakened to increase the degree of freedom of the convection of the melt, while the intensity of the magnetic field applied to the melt in the vicinity of the bottom part of the crucible is strengthened to suppress the convection.
    • 一种基于HMCZ方法制造在其晶体生长方向上具有均匀的微观氧浓度分布的大直径单晶的单晶制造装置,从而提供具有高的氧浓度分布的面内均匀性的晶片。 在基于HMCZ法的单晶制造装置中,当B表示坩埚内的熔体的底面的垂直位置,L表示开始晶体拉拔操作时熔体的深度,垂直位置 将超导电磁体12和15的线圈中心轴Cc控制在从位置B以下位置{(+ E,fra 1/3 + EE)xL}到位置B以上的位置的范围内的适当值 通过{(+ E,fra 1/3 + EE)xL}拉动单晶。 因此,施加到坩埚内的晶体生长界面附近的熔体的磁场的强度被削弱,以增加熔体对流的自由度,同时施加到熔体的磁场的强度 在坩埚底部附近被加强以抑制对流。