会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 51. 发明授权
    • Fully-depleted SON
    • 完全耗尽的SON
    • US08455308B2
    • 2013-06-04
    • US13048977
    • 2011-03-16
    • Kangguo ChengBruce DorisPranita KulkarniGhavam Shahidi
    • Kangguo ChengBruce DorisPranita KulkarniGhavam Shahidi
    • H01L21/00H01L21/76
    • H01L29/786H01L29/66772H01L29/78654H01L29/78696
    • A semiconductor device and a method of fabricating a semiconductor device. The semiconductor device includes a semiconductor substrate, an insulating layer, a first semiconductor layer, a dielectric layer, a second semiconductor layer, a source and drain junction, a gate, and a spacer. The method includes the steps of forming a semiconductor substrate, forming a shallow trench isolation layer, growing a first epitaxial layer, growing a second epitaxial layer, forming a gate, forming a spacer, performing a reactive ion etching, removing a portion of the first epitaxial layer, filling the void with a dielectric, etching back a portion of the dielectric, growing a silicon layer, implanting a source and drain junction, and forming an extension.
    • 半导体器件和半导体器件的制造方法。 半导体器件包括半导体衬底,绝缘层,第一半导体层,电介质层,第二半导体层,源极和漏极结,栅极和间隔物。 该方法包括以下步骤:形成半导体衬底,形成浅沟槽隔离层,生长第一外延层,生长第二外延层,形成栅极,形成间隔物,执行反应离子蚀刻,去除第一 外延层,用电介质填充空隙,蚀刻电介质的一部分,生长硅层,注入源极和漏极结,以及形成延伸。
    • 54. 发明申请
    • FET with Self-Aligned Back Gate
    • 具有自对准后门的FET
    • US20110316083A1
    • 2011-12-29
    • US12823798
    • 2010-06-25
    • Kangguo ChengBruce DorisAli KhakifiroozPranita Kulkarni
    • Kangguo ChengBruce DorisAli KhakifiroozPranita Kulkarni
    • H01L29/78H01L21/336
    • H01L29/66545H01L29/78648
    • A back-gated field effect transistor (FET) includes a substrate, the substrate comprising top semiconductor layer on top of a buried dielectric layer on top of a bottom semiconductor layer; a front gate located on the top semiconductor layer; a channel region located in the top semiconductor layer under the front gate; a source region located in the top semiconductor layer on a side of the channel region, and a drain region located in the top semiconductor layer on the side of the channel region opposite the source regions; and a back gate located in the bottom semiconductor layer, the back gate configured such that the back gate abuts the buried dielectric layer underneath the channel region, and is separated from the buried dielectric layer by a separation distance underneath the source region and the drain region.
    • 背栅式场效应晶体管(FET)包括衬底,该衬底包括位于底部半导体层顶部的掩埋电介质层顶部的顶部半导体层; 位于顶部半导体层上的前门; 位于前门下的顶部半导体层中的沟道区; 位于沟道区一侧的顶部半导体层中的源极区域和位于与源极区域相反的沟道区域侧的顶部半导体层中的漏极区域; 以及位于底部半导体层中的背栅,后栅配置成使得后栅极邻接沟道区下方的掩埋介电层,并且在源极区和漏极区之下与掩埋介电层分离距离 。
    • 58. 发明申请
    • Structure and method of making double-gated self-aligned finfet having gates of different lengths
    • 制作具有不同长度的门的双门控自对准finfet的结构和方法
    • US20070181930A1
    • 2007-08-09
    • US10711182
    • 2004-08-31
    • Huilong ZhuBruce DorisXinlin WangJochen BeintnerYing ZhangPhilip Oldiges
    • Huilong ZhuBruce DorisXinlin WangJochen BeintnerYing ZhangPhilip Oldiges
    • H01L27/108
    • H01L29/785H01L29/66795H01L29/7855H01L29/7856
    • A gated semiconductor device is provided, in which the body has a first dimension extending in a lateral direction parallel to a major surface of a substrate, and second dimension extending in a direction at least substantially vertical and at least substantially perpendicular to the major surface, the body having a first side and a second side opposite the first side. The gated semiconductor device includes a first gate overlying the first side, and having a first gate length in the lateral direction. The gated semiconductor device further includes a second gate overlying the second side, the second gate having a second gate length in the lateral direction which is different from, and preferably shorter than the first gate length. In one embodiment, the first gate and the second gate being electrically isolated from each other. In another embodiment the first gate consists essentially of polycrystalline silicon germanium and the second gate consists essentially of polysilicon.
    • 提供了门控半导体器件,其中主体具有在平行于衬底的主表面的横向方向上延伸的第一尺寸,以及在至少基本上垂直且至少基本垂直于主表面的方向上延伸的第二尺寸, 所述主体具有与所述第一侧相对的第一侧和第二侧。 门控半导体器件包括覆盖第一侧的第一栅极,并且在横向上具有第一栅极长度。 门控半导体器件还包括覆盖第二侧的第二栅极,第二栅极在横向上具有不同于第一栅极长度的第二栅极长度,并且优选地短于第一栅极长度。 在一个实施例中,第一栅极和第二栅极彼此电隔离。 在另一个实施例中,第一栅极主要由多晶硅锗组成,第二栅极主要由多晶硅组成。
    • 60. 发明申请
    • Method for tuning epitaxial growth by interfacial doping and structure including same
    • 通过界面掺杂和包括其的结构来调谐外延生长的方法
    • US20070090487A1
    • 2007-04-26
    • US11259654
    • 2005-10-26
    • Katherina BabichBruce DorisDavid MedeirosDevendra Sadana
    • Katherina BabichBruce DorisDavid MedeirosDevendra Sadana
    • H01L21/76H01L31/11
    • H01L29/0847H01L21/2236H01L21/2256H01L21/26513H01L21/823418H01L21/823814H01L29/66628H01L29/7834
    • A method that allows for uniform, simultaneous epitaxial growth of a semiconductor material on dissimilarly doped semiconductor surfaces (n-type and p-type) that does not impart substrate thinning via a novel surface preparation scheme, as well as a structure that results from the implementation of this scheme into the process integration flow for integrated circuitry are provided. The method of the present invention can by used for the selective or nonselective epitaxial growth of semiconductor material from the dissimilar surfaces. More specifically, the invention comprises a method for counterdoping of n-FET and/or p-FET regions of silicon circuitry during the halo and/or extension implantation process utilizing a technique by which the surface characteristics of the two regions are made similar with respect to their response to wet or dry surface preparation and which renders the two previously dissimilar surfaces amenable to simultaneous epitaxial growth of raised source/drain structures; but not otherwise affecting the electrical performance of the resulting device.
    • 允许通过新颖的表面制备方案不使衬底变薄的不同掺杂的半导体表面(n型和p型)上的半导体材料均匀地同时外延生长的方法,以及由 提供了将该方案实现为集成电路的过程集成流程。 本发明的方法可以用于从不同的表面进行半导体材料的选择性或非选择性外延生长。 更具体地说,本发明包括一种在卤素和/或延伸注入过程期间用于对硅电路的n-FET和/或p-FET区进行反掺杂的方法,利用这样的技术,使两个区域的表面特性相对于 它们对湿表面或干表面制备的反应,并且使得两个先前不同的表面可以容易地升高的源极/漏极结构的同时外延生长; 但不会影响所得设备的电气性能。