会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 42. 发明授权
    • Light-emitting semiconductor device using Group III nitride compound
    • 使用III族氮化物的发光半导体器件
    • US07045829B2
    • 2006-05-16
    • US08681412
    • 1996-07-23
    • Masayoshi KoikeShinya Asami
    • Masayoshi KoikeShinya Asami
    • H01L33/00
    • H01L33/32H01S5/3213H01S5/32341
    • A Group III nitride compound semiconductor includes a multiple layer structure having an emission layer between an n-type cladding layer and a p-type cladding layer. The n-type cladding layer may be below the emission layer, having been formed on another n-type layer which was formed over a buffer Layer and a sapphire substrate. The emission layer has a thickness which is wider than the diffusion length of holes within the emission layer. The n-type cladding layer is doped with a donor impurity and has a lattice constant Substantially equal to a lattice constant of the emission layer. The p-type cladding layer is doped with an acceptor impurity and has a forbidden band sufficiently wider than the forbidden band of the emission layer in ordor to confine electrons injected into the emission layer.
    • III族氮化物化合物半导体包括在n型包覆层和p型包覆层之间具有发射层的多层结构。 n型覆层可以在形成在缓冲层和蓝宝石衬底上的另一n型层上形成的发光层之下。 发光层的厚度比发光层内的孔的扩散长度宽。 n型包覆层掺杂有施主杂质,其晶格常数基本上等于发光层的晶格常数。 p型覆层被掺杂有受主杂质,并且具有比限制发射层中的发射层的禁带宽度更宽的禁带,以限制注入到发射层中的电子。
    • 43. 发明授权
    • Light-emitting aluminum gallium indium nitride compound semiconductor device having an improved luminous intensity
    • 具有改善的发光强度的发光铝镓铟氮化物半导体器件
    • US07001790B2
    • 2006-02-21
    • US09783035
    • 2001-02-15
    • Katsuhide ManabeHisaki KatoMichinari SassaShiro YamazakiMakoto AsaiNaoki ShibataMasayoshi Koike
    • Katsuhide ManabeHisaki KatoMichinari SassaShiro YamazakiMakoto AsaiNaoki ShibataMasayoshi Koike
    • H01L21/00
    • H01L33/32H01L33/0025H01L33/007H01L33/325H01L33/38H01L33/382H01L33/385H01L33/40
    • A light-emitting semiconductor device (10) consecutively includes a sapphire substrate (1), an AlN buffer layer (2), a silicon (Si) doped GaN n+-layer (3) of high carrier (n-type) concentration, a Si-doped (Alx3Ga1-x3)y3In1-y3N n+-layer (4) of high carrier (n-type) concentration, a zinc (Zn) and Si-doped (Alx2Ga1-x2)y2In1-y2N emission layer (5), and a Mg-doped (Alx1Ga1-x1)y1In1-y1N p-layer (6). The AlN layer (2) has a 500 Å thickness. The GaN n+-layer (3) has about a 2.0 μm thickness and a 2×1018/cm3 electron concentration. The n+-layer (4) has about a 2.0 μm thickness and a 2×1018/cm3 electron concentration. The emission layer (5) has about a 0.5 μm thickness. The p-layer 6 has about a 1.0 μm thickness and a 2×1017/cm3 hole concentration. Nickel electrodes (7, 8) are connected to the p-layer (6) and n+-layer (4), respectively. A groove (9) electrically insulates the electrodes (7, 8). The composition ratio of Al, Ga, and In in each of the layers (4, 5, 6) is selected to meet the lattice constant of GaN in the n+-layer (3). The LED (10) is designed to improve luminous intensity and to obtain purer blue color.
    • 发光半导体器件(10)连续地包括蓝宝石衬底(1),AlN缓冲层(2),高载体的硅(Si)掺杂GaN n + +层(3) (n型)浓度,Si掺杂(Al x3 Ga 1-x 3)y 3在1-y 3中, 具有高载流子(n型)浓度的氮(Zn)和Si掺杂(Al 2 x 2 Ga 2) 1-x2 Y2在1-y2 N发射层(5)中,以及Mg掺杂(Al x1 Ga) 在1-y1 N p层(6)中。 AlN层(2)的厚度为500埃。 GaN n + +(3)具有约2.0μm厚度和2×10 18 / cm 3电子浓度。 n + +层(4)具有约2.0μm厚度和2×10 18 / cm 3电子浓度。 发射层(5)的厚度约为0.5μm。 p层6具有约1.0μm厚度和2×10 17 / cm 3孔浓度。 镍电极(7,8)分别连接到p层(6)和n + +层(4)。 一个凹槽(9)使电极(7,8)电绝缘。 选择各层(4,5,6)中的Al,Ga和In的组成比以满足n +层(3)中的GaN的晶格常数。 LED(10)被设计为提高发光强度并获得更纯的蓝色。
    • 45. 发明授权
    • Semiconductor crystal producing method
    • 半导体晶体制造方法
    • US06946370B2
    • 2005-09-20
    • US10488083
    • 2002-08-05
    • Masayoshi KoikeHiroshi Watanabe
    • Masayoshi KoikeHiroshi Watanabe
    • C30B29/38C30B25/02C30B25/18H01L21/20
    • C30B25/02C30B25/18C30B29/403C30B29/406
    • In a separation layer removing process α, temperature in a reaction chamber (heat treatment temperature TX) is raised to about 1000° C. and a separation layer A is evaporated through thermal decomposition, to thereby separate about 10 μm in thickness of protection layer B from a base substrate side (a sapphire substrate 101 comprising a buffer layer 102). Because decomposition temperature of the separation layer A is higher than growth temperature of the protection layer B (about 650° C.) and lower than growth temperature of the semiconductor crystal C (about 1000° C.), the separation layer A vanishes (evaporates) by thermal decomposition, which generates this separation process. Accordingly, a semiconductor crystal having a cross sectional structure shown in FIG. 2B is obtained. By employing the protection layer B which is independent from the base substrate side as another crystal growth substrate, dislocations and cracks may not be generated by stress owing to difference of lattice constants or difference of thermal expansion coefficients, and a semiconductor crystal layer C (GaN single crystal) of high quality can be obtained.
    • 在分离层去除方法α中,将反应室中的温度(热处理温度T×X)升高至约1000℃,通过热分解蒸发分离层A,从而分离约 保护层B的厚度为10μm,从基底侧(包括缓冲层102的蓝宝石衬底101)。 由于分离层A的分解温度高于保护层B的生长温度(约650℃)且低于半导体晶体C的生长温度(约1000℃),所以分离层A消失(蒸发 )通过热分解,产生这种分离过程。 因此,具有图1所示的横截面结构的半导体晶体。 2 B。 通过采用独立于基底侧的保护层B作为另一种晶体生长衬底,由于晶格常数或热膨胀系数的差异而导致的应力不会产生位错和裂纹,并且半导体晶体层C(GaN 单晶)。
    • 48. 发明授权
    • Light-emitting device using group III nitride compound semiconductor
    • 使用III族氮化物化合物半导体的发光装置
    • US06620643B1
    • 2003-09-16
    • US09631980
    • 2000-08-03
    • Masayoshi Koike
    • Masayoshi Koike
    • H01L2100
    • H01L33/08H01L33/06H01L2224/48091H01L2224/48247H01L2224/48257H01L2224/49107H01L2924/00014
    • A group III nitride compound semiconductor light-emitting device provides a multiple quantum well (MQW) active layer formed on an intermediate layer. The MQW active layer may include, for example, five semiconductor layers having a thickness of approximately 500 Å. The five layers of the MQW active layer may comprise two gallium nitride (GaN) barrier layers each having a thickness of approximately 100 Å and three well layers having different emission wavelengths. The barrier layers and the well layers are stacked alternately. The three well layers may include, for example, an Al0.1In0.9N red-light-emitting well layer having a thickness of approximately 20 Å and doped with impurities (zinc (Zn) and silicon (Si)), a non-doped In0.2Ga0.8N green-light-emitting well layer having a thickness of approximately 50 Å and a non-doped In0.05Ga0.95N blue-light-emitting well layer having a thickness of approximately 30 Å, wherein the three well layers are stacked in the order given.
    • III族氮化物化合物半导体发光器件提供形成在中间层上的多量子阱(MQW)有源层。 MQW有源层可以包括例如厚度约为500埃的五个半导体层。 MQW有源层的五层可以包括各自具有大约厚度的两个氮化镓(GaN)阻挡层和具有不同发射波长的三个阱层。 阻挡层和阱层交替堆叠。 三个阱层可以包括例如厚度约为20埃的掺杂有杂质(锌(Zn)和硅(Si))的Al 0.1 In 0.9 N红色发光阱层,非掺杂 具有厚度约为50埃的In 0.2 Ga 0.8 N绿色发光阱层和厚度约为30埃的未掺杂的In0.05Ga0.95N蓝色发光阱层,其中三个阱层是 按照给定的顺序堆放。