会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Light-emitting semiconductor device using group III nitride compound
    • 使用III族氮化物化合物的发光半导体器件
    • US5959401A
    • 1999-09-28
    • US861116
    • 1997-05-21
    • Shinya AsamiMasayoshi Koike
    • Shinya AsamiMasayoshi Koike
    • H01L33/06H01L33/32H01L33/42H01S5/343H01J1/62
    • H01L33/32H01L33/325
    • A light-emitting semiconductor device consecutively includes a sapphire substrate, an AlN buffer layer, a silicon (Si) doped n.sup.+ -layer GaN, a Si-doped n-type GaN, a zinc (Zn) and Si-doped In.sub.0.20 Ga.sub.0.80 N emission layer, a magnesium (Mg) doped p-type Al.sub.0.08 Ga.sub.0.92 N layer as a cladding layer, an Mg-doped p-type GaN layer as a first contact layer, and an Mg-doped p.sup.+ -type GaN layer as a second contact layer. The cladding layer and the first and second contact layers have a total thickness of 10 nm to 150 nm which is thinner than that of a conventional p-layers by a half to one thirtieth. The emission layer is exposed to high growth temperature for 1.3 min. to 20 min. which is shorter than that of the conventional emission layer by a half to one thirtieth. As a result, crystallinity of the emission layer is improved, because it is prevented that In of the emission layer diffuses into the cladding and the contact layers, that N of the emission layer evaporates, and that Mg of the cladding and the contact layers diffuses into the emission layer.
    • 发光半导体器件连续地包括蓝宝石衬底,AlN缓冲层,掺杂硅(Si)的n +层GaN,Si掺杂的n型GaN,锌(Zn)和掺杂Si的In0.GaGa。 80N发射层,作为包覆层的Mg(Mg)掺杂的p型Al0.08Ga0.92N层,作为第一接触层的Mg掺杂的p型GaN层,以及Mg掺杂的p +型GaN层作为 第二接触层。 包覆层和第一和第二接触层的总厚度为10nm至150nm,其比常规p层薄至半至第三十分之一。 发射层暴露于高生长温度1.3分钟。 至20分钟 其比常规发射层短一半至三十分之一。 结果,发光层的结晶度提高,因为防止发光层的In扩散到包层和接触层中,发光层的N蒸发,并且包层和接触层的Mg扩散 进入发射层。
    • 3. 发明授权
    • Light-emitting semiconductor device using group III nitride compound
    • 使用III族氮化物化合物的发光半导体器件
    • US06645785B2
    • 2003-11-11
    • US09909895
    • 2001-07-23
    • Masayoshi KoikeShinya Asami
    • Masayoshi KoikeShinya Asami
    • H01L2100
    • H01L33/325B82Y20/00H01L33/06
    • An emission layer (5) for a light source device is formed to have a multi-layer structure, doped with an acceptor and a donor impurity. The multi-layer structure may include a quantum well (QW) structure or a multi quantum well (MQW) structure (50). With such a structure, a peak wavelength of the light source can be controlled, because the distances between atoms of the acceptor and the donor impurities are widened. Several arrangements can be made by, e.g., altering the thickness of each composite layer of the multi-layer structure, altering their composition ratio, forming undoped layer 5 between the impurity doped layers, and so forth. Further, luminous intensity of ultra violet color can be improved, because doping the donor impurity and the acceptor impurity realizes a donor-acceptor emission mechanism and abundant carriers. Several arrangements can be made by, e.g., optimizing the materials of the composite layers, optimizing their composition ratios, optimizing their lattice constants, and so forth to further enhance the luminous intensity of the light source.
    • 用于光源器件的发射层(5)形成为具有掺杂有受主和施主杂质的多层结构。 多层结构可以包括量子阱(QW)结构或多量子阱(MQW)结构(50)。 通过这样的结构,可以控制光源的峰值波长,因为受主的原子与供体杂质之间的距离变宽。 可以通过例如改变多层结构的每个复合层的厚度,改变它们的组成比,在杂质掺杂层之间形成未掺杂的层5等来进行几种布置。 此外,可以提高紫外线的发光强度,因为掺杂施主杂质和受主杂质实现了供体 - 受体发射机制和丰富的载体。 可以通过例如优化复合层的材料,优化其组成比,优化其晶格常数等来进行若干布置,以进一步增强光源的发光强度。
    • 8. 发明授权
    • Light-emitting semiconductor device using Group III nitride compound
    • 使用III族氮化物的发光半导体器件
    • US07045829B2
    • 2006-05-16
    • US08681412
    • 1996-07-23
    • Masayoshi KoikeShinya Asami
    • Masayoshi KoikeShinya Asami
    • H01L33/00
    • H01L33/32H01S5/3213H01S5/32341
    • A Group III nitride compound semiconductor includes a multiple layer structure having an emission layer between an n-type cladding layer and a p-type cladding layer. The n-type cladding layer may be below the emission layer, having been formed on another n-type layer which was formed over a buffer Layer and a sapphire substrate. The emission layer has a thickness which is wider than the diffusion length of holes within the emission layer. The n-type cladding layer is doped with a donor impurity and has a lattice constant Substantially equal to a lattice constant of the emission layer. The p-type cladding layer is doped with an acceptor impurity and has a forbidden band sufficiently wider than the forbidden band of the emission layer in ordor to confine electrons injected into the emission layer.
    • III族氮化物化合物半导体包括在n型包覆层和p型包覆层之间具有发射层的多层结构。 n型覆层可以在形成在缓冲层和蓝宝石衬底上的另一n型层上形成的发光层之下。 发光层的厚度比发光层内的孔的扩散长度宽。 n型包覆层掺杂有施主杂质,其晶格常数基本上等于发光层的晶格常数。 p型覆层被掺杂有受主杂质,并且具有比限制发射层中的发射层的禁带宽度更宽的禁带,以限制注入到发射层中的电子。