会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 23. 发明申请
    • On-chip electrochemical flow cell
    • 片上电化学流通池
    • US20070145262A1
    • 2007-06-28
    • US11454364
    • 2006-06-16
    • Yu-Chong TaiJun XieDarron Young
    • Yu-Chong TaiJun XieDarron Young
    • H01J49/00
    • H01J49/165H01J49/0018
    • A microfluidic device including at least one microfabricated electrochemical flow cell and method of manufacturing such a device are disclosed herein. The electrochemical cell comprising at least a substrate, wherein the substrate has a front face and a back face; a channel wall bonded to the front face of the substrate without using a spacer, wherein the wall and the substrate define a microchannel having an inlet for receiving a fluid and an outlet for transmitting the fluid; a plurality of electrodes inside the microchannel, wherein said plurality of electrodes comprises one or more working electrodes and one or more counter electrodes, wherein the fluid flows over the surface of the plurality of electrodes and wherein optionally a length of the microchannel over the one or more working electrodes is greater than a height of the microchannel over the one or more working electrodes. Other peripherals may also be included in the microfluidic device of the current invention, including an electrospray ionization (ESI) nozzle, one or more detectors, a chromatographic column, etc. each of which may be microfluidically coupled to the electrochemical flow cells to create more complicated analytic devices.
    • 本文公开了包括至少一个微加工电化学流动池的微流体装置及其制造方法。 所述电化学电池至少包括衬底,其中所述衬底具有正面和背面; 通道壁,其不使用间隔件结合到所述基板的前表面,其中所述壁和所述基板限定具有用于接收流体的入口和用于传输所述流体的出口的微通道; 微通道内的多个电极,其中所述多个电极包括一个或多个工作电极和一个或多个反电极,其中所述流体流过所述多个电极的表面,并且其中可选地,所述微通道的长度在所述一个或多个 更多的工作电极大于在一个或多个工作电极上的微通道的高度。 其他外围设备也可以包括在本发明的微流体装置中,包括电喷雾离子化(ESI)喷嘴,一个或多个检测器,色谱柱等,其中每一个可以微流体耦合到电化学流动池以产生更多的 复杂的分析设备。
    • 25. 发明授权
    • Integrated capacitive microfluidic sensors method and apparatus
    • 集成电容微流体传感器的方法和装置
    • US06945116B2
    • 2005-09-20
    • US10802667
    • 2004-03-16
    • Jun XieJason ShihYu-Chong Tai
    • Jun XieJason ShihYu-Chong Tai
    • G01N27/22G01N27/447G01L9/12
    • G01N27/226B81B7/02B81B2201/0292B81B2201/058G01L9/0042G01L9/0072
    • A microfluidic device and method for capacitive sensing. The device includes a fluid channel including an inlet at a first end and an outlet at a second end, a cavity region coupled to the fluid channel, and a polymer based membrane coupled between the fluid channel and the cavity region. Additionally, the device includes a first capacitor electrode coupled to the membrane, a second capacitor electrode coupled to the cavity region and physically separated from the first capacitor electrode by at least the cavity region, and an electrical power source coupled between the first capacitor electrode and the second capacitor electrode and causing an electric field at least within the cavity region. The polymer based membrane includes a polymer.
    • 用于电容感测的微流体装置和方法。 该装置包括流体通道,其包括在第一端处的入口和在第二端处的出口,耦合到流体通道的空腔区域以及耦合在流体通道和腔区域之间的基于聚合物的膜。 另外,该器件包括耦合到膜的第一电容器电极,耦合到空腔区域的第二电容器电极,并且至少通过腔区域与第一电容器电极物理分离;以及电源,耦合在第一电容器电极和 所述第二电容器电极至少在所述腔区域内引起电场。 基于聚合物的膜包括聚合物。
    • 30. 发明申请
    • DESIGN OF AN IC-PROCESSED POLYMER NANO-LIQUID CHROMATORAPHY SYSTEM ON-A-CHIP AND METHOD OF MAKING IT
    • IC加工聚合物纳米液相色谱系统的设计及其制备方法
    • US20110209531A1
    • 2011-09-01
    • US13037192
    • 2011-02-28
    • Yu-Chong TAIQing HeJun XieChanglin PangTerry D. Lee
    • Yu-Chong TAIQing HeJun XieChanglin PangTerry D. Lee
    • G01N30/02B01D15/22H05K3/28
    • H05K3/284G01N30/6047G01N30/6095G01N2030/645G03F1/80G01N2030/625
    • Embodiments in accordance with the present invention relate to packed-column nano-liquid chromatography (nano-LC) systems integrated on-chip, and methods for producing and using same. The microfabricated chip includes a column, flits/filters, an injector, and a detector, fabricated in a process compatible with those conventionally utilized to form integrated circuits. The column can be packed with supports for various different stationary phases to allow performance of different forms of nano-LC, including but not limited to reversed-phase, normal-phase, adsorption, size-exclusion, affinity, and ion chromatography. A cross-channel injector injects a nanolitre/picolitre-volume sample plug at the column inlet. An electrochemical/conductivity sensor integrated at the column outlet measures separation signals. A self-aligned channel-strengthening technique increases pressure rating of the microfluidic system, allowing it to withstand the high pressure normally used in high performance liquid chromatography (HPLC). On-chip sample injection, separation, and detection of mixture of anions in water is successfully demonstrated using ion-exchange nano-LC.
    • 根据本发明的实施方案涉及集成在片上的填充柱纳米液相色谱(nano-LC)系统及其制造和使用方法。 微制造的芯片包括以常规用于形成集成电路的方法兼容的工艺制造的柱,过滤器,注射器和检测器。 该柱可以填充有用于各种不同固定相的载体,以允许不同形式的纳米LC的性能,包括但不限于反相,正相,吸附,尺寸排阻,亲和力和离子色谱。 交叉通道注射器在柱入口处注入纳升/皮升体积的样品塞。 集成在色谱柱出口处的电化学/电导率传感器测量分离信号。 自对准的通道加强技术提高了微流体系统的压力等级,使其能够承受通常用于高效液相色谱(HPLC)的高压。 使用离子交换纳米LC成功地证明了在水中阴离子的混合物的片上样品注入,分离和检测。