会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 215. 发明授权
    • MIM capacitor having a high-dielectric-constant interelectrode insulator and a method of fabrication
    • 具有高介电常数的电极间绝缘体的MIM电容器及其制造方法
    • US06897510B2
    • 2005-05-24
    • US10647715
    • 2003-08-25
    • Horng-Huei Tseng
    • Horng-Huei Tseng
    • H01L21/00H01L21/02H01L21/20H01L21/8242H01L27/108H01L29/76H01L29/94H01L31/119
    • H01L28/55H01L27/10852H01L28/60
    • A metal-insulator-metal (MIM) capacitor using a high-k dielectric and method of fabrication are described. After forming node contacts to the substrate a patterned stacked layer comprised of a first metal layer, an insulating dummy layer, and a second metal layer is formed over the node contacts. Sidewall spacers are formed form a third metal layer to complete the lower electrode. A thin dielectric film is deposited. A patterned fourth metal layer is used as the upper electrode to complete the MIM capacitor. The patterned insulating dummy layer acts as a template for making the capacitor without partaking in the electrical properties of the capacitor. The height of the dummy layer is used to fine-tune the capacitance for the circuit requirements. The dummy layer is not an active part of the circuit. The dummy layer does not react with the metals, barrier layers are not required, reducing process complexity.
    • 描述了使用高k电介质和制造方法的金属绝缘体金属(MIM)电容器。 在与衬底形成节点接触之后,在节点接触件上形成由第一金属层,绝缘假层和第二金属层构成的图案化叠层。 侧壁间隔件由第三金属层形成,以完成下电极。 沉积薄介电膜。 使用图案化的第四金属层作为上电极来完成MIM电容器。 图案化的绝缘伪层作为制造电容器的模板,而不会分离电容器的电性能。 虚拟层的高度用于对电路要求的电容进行微调。 虚拟层不是电路的有效部分。 虚拟层不与金属反应,不需要阻挡层,降低了工艺的复杂性。
    • 216. 发明申请
    • MIM CAPACITOR HAVING A HIGH-DIELECTRIC-CONSTANT INTERELECTRODE INSULATOR AND A METHOD OF FABRICATION
    • 具有高介电常数电介质绝缘体的MIM电容器和制造方法
    • US20050048713A1
    • 2005-03-03
    • US10647715
    • 2003-08-25
    • Horng-Huei Tseng
    • Horng-Huei Tseng
    • H01L21/00H01L21/02H01L21/20H01L21/8242H01L27/108H01L29/76H01L29/94H01L31/119
    • H01L28/55H01L27/10852H01L28/60
    • A metal-insulator-metal (MIM) capacitor using a high-k dielectric and method of fabrication are described. After forming node contacts to the substrate a patterned stacked layer comprised of a first metal layer, an insulating dummy layer, and a second metal layer is formed over the node contacts. Sidewall spacers are formed form a third metal layer to complete the lower electrode. A thin high-k dielectric film is deposited. A patterned fourth metal layer is used as the upper electrode to complete the MIM capacitor. The patterned insulating dummy layer acts as a template for making the capacitor without partaking in the electrical properties of the capacitor. The height of the dummy layer is used to fine-tune the capacitance for the circuit requirements. The dummy layer is not an active part of the circuit. The dummy layer does not react with the metals, barrier layers are not required, reducing process complexity.
    • 描述了使用高k电介质和制造方法的金属绝缘体金属(MIM)电容器。 在与衬底形成节点接触之后,在节点接触件上形成由第一金属层,绝缘假层和第二金属层构成的图案化叠层。 侧壁间隔件由第三金属层形成,以完成下电极。 沉积薄的高k电介质膜。 使用图案化的第四金属层作为上电极来完成MIM电容器。 图案化的绝缘伪层作为制造电容器的模板,而不会分离电容器的电性能。 虚拟层的高度用于对电路要求的电容进行微调。 虚拟层不是电路的有效部分。 虚拟层不与金属反应,不需要阻挡层,降低了工艺的复杂性。
    • 218. 发明授权
    • Nonvolatile memory device with reduced floating gate and increased coupling ratio and manufacturing method thereof
    • 具有减小的浮动栅极和增加耦合比的非易失性存储器件及其制造方法
    • US06730958B2
    • 2004-05-04
    • US10446684
    • 2003-05-29
    • Horng-Huei Tseng
    • Horng-Huei Tseng
    • H01L29788
    • H01L27/11521H01L27/115H01L29/42324Y10S257/90
    • A nonvolatile memory device with a reduced size floating gate and an increased coupling ratio is disclosed. The nonvolatile memory device includes two isolation structures protruding above a semiconductor substrate. Two dielectric spacers are disposed on a pair of opposing sidewalls of the two isolation structures. The two dielectric spacers are spaced from one another at a distance that defines a gate width which is beyond lithography limit. A tunnel dielectric and a floating gate are provided on substrate and confined between the two dielectric spacers. The floating gate has a smaller bottom surface area relative to its top surface area and has a surface substantially coplanar with a surface of the isolation structures. On the coplanar surface, an inter-gate dielectric and a control gate are provided. Optionally, a lightly doped region is provided beside the floating gate 118 and within the substrate. A manufacturing method for forming such memory device is also disclosed.
    • 公开了一种具有减小尺寸的浮动栅极和增加的耦合比的非易失性存储器件。 非易失性存储器件包括在半导体衬底上突出的两个隔离结构。 两个电介质间隔物设置在两个隔离结构的一对相对的侧壁上。 两个电介质间隔物以限定超出光刻极限的栅极宽度的距离彼此间隔开。 隧道电介质和浮栅设置在衬底上并被限制在两个电介质间隔物之间​​。 浮动栅极相对于其顶表面区域具有较小的底表面积,并且具有与隔离结构的表面基本上共面的表面。 在共面上设置栅极间电介质和控制栅极。 可选地,在浮置栅极118旁边和衬底内设置轻掺杂区域。 还公开了一种用于形成这种存储器件的制造方法。
    • 220. 发明授权
    • Method of fabricating a non-floating body device with enhanced performance
    • 制造具有增强性能的非浮体装置的方法
    • US06627515B1
    • 2003-09-30
    • US10318471
    • 2002-12-13
    • Horng-Huei TsengJyh-Chyurn GuoChenming HuDa-Chi Lin
    • Horng-Huei TsengJyh-Chyurn GuoChenming HuDa-Chi Lin
    • H01L2176
    • H01L29/7842H01L21/76232H01L21/76264H01L21/76283H01L29/0653H01L29/1054H01L29/7848H01L2924/0002H01L2924/00
    • A method of forming a buried silicon oxide region in a semiconductor substrate with portions of the buried silicon oxide region formed underlying portions of a strained silicon shape, and where the strained silicon shape is used to accommodate a semiconductor device, has been developed. A first embodiment of this invention features a buried oxide region formed in a silicon alloy layer, via thermal oxidation procedures. A first portion of the strained silicon layer, protected during the thermal oxidation procedure, overlays the silicon alloy layer while a second portion of the strained silicon layer overlays the buried oxide region. A second embodiment of this invention features an isotropic dry etch procedure used to form an isotropic opening in the silicon alloy layer, with the opening laterally extending under a portion of the strained silicon layer. Subsequent silicon oxide deposition and planarization procedures results in a first portion of the strained silicon layer overlying the silicon alloy layer while a second portion overlays a buried oxide region. A semiconductor device is then formed in the strained silicon layer, with specific elements of the semiconductor device located on a buried oxide region.
    • 已经开发了在半导体衬底中形成掩埋氧化硅区域的方法,其中形成在应变硅形状的部分下方的掩埋氧化硅区域的部分以及应变硅形状用于容纳半导体器件的方法。 本发明的第一实施例的特征在于通过热氧化工艺在硅合金层中形成的掩埋氧化物区域。 在热氧化过程中保护的应变硅层的第一部分覆盖硅合金层,而应变硅层的第二部分覆盖掩埋氧化物区域。 本发明的第二实施例的特征在于用于在硅合金层中形成各向同性开口的各向同性干法蚀刻程序,其中开口横向延伸在应变硅层的一部分下方。 随后的氧化硅沉积和平坦化过程导致覆盖硅合金层的应变硅层的第一部分,而第二部分覆盖掩埋氧化物区域。 然后在应变硅层中形成半导体器件,其中半导体器件的特定元件位于掩埋氧化物区域上。