会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 114. 发明授权
    • Algainn pendeoepitaxy led and laser diode structures for pure blue or green emission
    • Algainn pendeoeitaxy led和激光二极管结构,用于纯蓝色或绿色发射
    • US06285696B1
    • 2001-09-04
    • US09363314
    • 1999-07-28
    • David P. BourLinda T. RomanoMichael A. Kneissl
    • David P. BourLinda T. RomanoMichael A. Kneissl
    • H01S319
    • H01L33/32H01L33/007
    • Group III-V nitride semiconductors are used as optoelectronic light emitters. The semiconductor alloy InGaN is used as the active region in nitride laser diodes and LEDs, as its bandgap energy can be tuned by adjusting the alloy composition, to span the entire visible spectrum. InGaN layers of high-indium content, as required for blue or green emission are difficult to grow, however, because the poor lattice mismatch between GaN and InGaN causes alloy segregation. In this situation, the inhomogeneous alloy composition results in spectrally impure emission, and diminished optical gain. To suppress segregation, the high-indium-content InGaN active region may be deposited over a thick InGaN layer, substituted for the more typical GaN. First depositing a thick InGaN layer establishes a larger lattice parameter than that of GaN. Consequently, a high indium content heterostructure active region grown over the thick InGaN layer experiences significantly less lattice mismatch compared to GaN. Therefore, it is less likely to suffer structural degradation due to alloy segregation. Thus, the thick GaN structure enables the growth of a high indium content active region with improved structural and optoelectronic properties, leading to LEDs with spectrally pure emission, and lower threshold laser diodes.
    • III-V族氮化物半导体用作光电子发光体。 半导体合金InGaN用作氮化物激光二极管和LED中的有源区,因为其带隙能量可以通过调整合金组成来调整,以跨越整个可见光谱。 然而,蓝色或绿色发射所需的高铟含量的InGaN层难以生长,但是由于GaN和InGaN之间的不良晶格失配导致合金偏析。 在这种情况下,不均匀的合金组成导致光谱不纯的发射,并减少了光学增益。 为了抑制偏析,可以在厚的InGaN层上沉积高铟含量的InGaN有源区,代替更典型的GaN。 首先沉积厚的InGaN层形成比GaN更大的晶格参数。 因此,与GaN相比,在厚的InGaN层上生长的高铟含量的异质结构有源区域的晶格失配明显减少。 因此,由于合金分离而不太可能遭受结构劣化。 因此,厚的GaN结构能够增加具有改进的结构和光电性质的高铟含量活性区域,导致具有光谱纯发射的LED和较低阈值的激光二极管。
    • 115. 发明授权
    • In-situ acceptor activation in group III-v nitride compound
semiconductors
    • III-v族氮化物半导体中的原位受体激活
    • US5926726A
    • 1999-07-20
    • US928250
    • 1997-09-12
    • David P. BourG.A. Neville ConnellDonald R. Scifres
    • David P. BourG.A. Neville ConnellDonald R. Scifres
    • C30B25/02H01L21/205H01L33/00H01L33/32
    • H01L33/325C30B25/02C30B29/403C30B29/406H01L21/02458H01L21/0254H01L21/02579H01L21/0262H01L33/007
    • A method of manufacturing a p-type III-V nitride compound semiconductor utilizing vapor phase epitaxy is carried out in a MOCVD reactor by growing a III-V nitride compound semiconductor in the reactor employing a reaction gas containing a p-type impurity and then annealing in-situ the nitride compound semiconductor to bring about acceptor activation, the annealing carried out at a temperature below the growth temperature of the III-V nitride compound semiconductor during reactor cooldown. A nitrogen (N) reactant or precursor is provided in the reactor during the annealing step which can produce a reactive form of N capable of suppressing surface decomposition and does not produce atomic hydrogen. Also, acceptor activation is achieved through the employment of a cap layer comprising a n-type Group III-V nitride material, e.g., n-GaN, grown on the p-doped Group III-V nitride layer preventing the occurrence of hydrogenation of the underlying p-doped layer during cooldown. This non-post-growth activation eliminates the need for a subsequent thermal anneal step since any acceptor passivation is prevented in the first instance.
    • 利用气相外延制造p型III-V族氮化物半导体的方法在MOCVD反应器中通过在含有p型杂质的反应气体的反应器中生长III-V族氮化物半导体,然后退火 原位氮化物化合物半导体引起受体活化,退火在反应器冷却期间在低于III-V族氮化物半导体的生长温度的温度下进行。 在退火步骤中在反应器中提供氮(N)反应物或前体,其可以产生能够抑制表面分解并且不产生原子氢的反应性形式的N。 此外,通过使用包含在p掺杂的III-V族氮化物层上生长的n型III-V族氮化物材料(例如n-GaN)的覆盖层来实现受体激活,防止发生氢化 在冷却时的下面的p掺杂层。 这种非后生长激活消除了对后续热退火步骤的需要,因为在第一种情况下防止了任何受体钝化。
    • 116. 发明授权
    • Semiconductor laser or array formed by layer intermixing
    • 半导体激光器或由层间混合形成的阵列
    • US5708674A
    • 1998-01-13
    • US367554
    • 1995-01-03
    • Kevin J. BeerninkRobert L. ThorntonDavid P. BourThomas L. PaoliJack Walker
    • Kevin J. BeerninkRobert L. ThorntonDavid P. BourThomas L. PaoliJack Walker
    • H01S5/00H01L21/18H01S5/34H01S5/343H01S5/40H01S3/19
    • B82Y20/00H01L21/182H01S5/34H01S5/4043H01S5/3413H01S5/3414H01S5/3432H01S5/34326H01S5/4087
    • A fabrication process and several structures for an index-guided laser diode formed by IILD or for a multiple wavelength laser array containing stacked semi-conductive active layers with quantum wells. The laser wavelength is varied laterally by effectively inactivating quantum wells which have transition wavelengths longer than that desired in the selected portion of the device. The quantum wells are inactivated by intermixing them with the surrounding high band gap semiconductor layers. To accomplish this intermixing without affecting the active layer in nearby regions, a finite source of impurity inducing or promoting intermixing is located in proximity to the quantum well to be intermixed, and the sample is annealed under conditions which allow for lateral patterning of the impurity-induced intermixing. Alternatively, the body is capped over the quantum well to be inactivated with a material which induces vacancies in semi-conductive material during thermal annealing, thus promoting vacancy-enhanced intermixing of the undesired quantum well. The intermixing can also be brought about by patterned annealing or selective laser heating which produces local annealing, or by use of two different caps. For the index-guided laser diode, the flanking index-guiding regions are formed by IILD from a buried impurity source, in which surface conditions are controlled to promote impurity diffusion to the flanking regions but not to the active stripe region between the flanking regions.
    • 用于由IILD或包含具有量子阱的堆叠半导电有源层的多波长激光器阵列形成的折射率引导激光二极管的制造工艺和若干结构。 通过有效地使具有比器件所选部分中所需要的转换波长更长的量子阱来激活激光波长。 量子阱通过将它们与周围的高带隙半导体层混合而失活。 为了实现这种混合而不影响附近区域中的有源层,杂质诱导或促进混合的有限源位于量子阱附近,以便混合,并且样品在允许杂质 - 诱导混合。 或者,通过在热退火期间在半导电材料中引起空位的材料将物体盖在量子阱上以使其失活,从而促进不期望的量子阱的空位增强的混合。 混合还可以通过图案化退火或选择性激光加热产生局部退火,或通过使用两个不同的盖来实现。 对于折射率引导激光二极管,侧翼引导区域由埋藏杂质源的IILD形成,其中控制表面条件以促进杂质扩散到侧翼区域而不是侧向区域之间的有源条纹区域。
    • 117. 发明授权
    • Reactor clean
    • 电抗器清洁
    • US09127364B2
    • 2015-09-08
    • US12913688
    • 2010-10-27
    • David P. Bour
    • David P. Bour
    • C23C16/00C23C16/54C23C16/30C23C16/455H01L21/67H01L21/677
    • C23C16/54C23C16/301C23C16/45519H01L21/67173H01L21/6719H01L21/6776
    • A method and apparatus for performing chemical vapor deposition (CVD) processes is provided. In one embodiment, the apparatus comprises a reactor body having a processing region, comprising a wafer carrier track having a wafer carrier disposed thereon, at least one sidewall having an exhaust assembly for exhausting gases from the processing region, a lid assembly disposed on the reactor body, comprising a lid support comprising a first showerhead assembly for supplying reactant gases to the processing region, a first isolator assembly for supplying isolation gases to the processing region, a second showerhead assembly for supplying reactant gases to the processing region, and a second isolator assembly for supplying isolation gases to the processing region, wherein the first showerhead assembly, the first isolator assembly, the second showerhead assembly, and the second isolator assembly are consecutively and linearly disposed next to each other.
    • 提供了一种用于进行化学气相沉积(CVD)工艺的方法和装置。 在一个实施例中,该装置包括具有处理区域的反应器主体,该反应器主体包括具有设置在其上的晶片载体的晶片载体轨道,至少一个侧壁,具有用于从处理区域排出气体的排气组件,设置在反应器 主体,包括盖支撑件,其包括用于将反应气体供应到处理区域的第一喷淋头组件,用于向处理区域供应隔离气体的第一隔离器组件,用于将反应气体供应到处理区域的第二喷头组件和第二隔离器 用于向处理区域供应隔离气体的组件,其中第一喷淋头组件,第一隔离器组件,第二淋浴头组件和第二隔离器组件彼此相邻并线性地设置。