会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • In-situ acceptor activation in group III-v nitride compound
semiconductors
    • III-v族氮化物半导体中的原位受体激活
    • US5926726A
    • 1999-07-20
    • US928250
    • 1997-09-12
    • David P. BourG.A. Neville ConnellDonald R. Scifres
    • David P. BourG.A. Neville ConnellDonald R. Scifres
    • C30B25/02H01L21/205H01L33/00H01L33/32
    • H01L33/325C30B25/02C30B29/403C30B29/406H01L21/02458H01L21/0254H01L21/02579H01L21/0262H01L33/007
    • A method of manufacturing a p-type III-V nitride compound semiconductor utilizing vapor phase epitaxy is carried out in a MOCVD reactor by growing a III-V nitride compound semiconductor in the reactor employing a reaction gas containing a p-type impurity and then annealing in-situ the nitride compound semiconductor to bring about acceptor activation, the annealing carried out at a temperature below the growth temperature of the III-V nitride compound semiconductor during reactor cooldown. A nitrogen (N) reactant or precursor is provided in the reactor during the annealing step which can produce a reactive form of N capable of suppressing surface decomposition and does not produce atomic hydrogen. Also, acceptor activation is achieved through the employment of a cap layer comprising a n-type Group III-V nitride material, e.g., n-GaN, grown on the p-doped Group III-V nitride layer preventing the occurrence of hydrogenation of the underlying p-doped layer during cooldown. This non-post-growth activation eliminates the need for a subsequent thermal anneal step since any acceptor passivation is prevented in the first instance.
    • 利用气相外延制造p型III-V族氮化物半导体的方法在MOCVD反应器中通过在含有p型杂质的反应气体的反应器中生长III-V族氮化物半导体,然后退火 原位氮化物化合物半导体引起受体活化,退火在反应器冷却期间在低于III-V族氮化物半导体的生长温度的温度下进行。 在退火步骤中在反应器中提供氮(N)反应物或前体,其可以产生能够抑制表面分解并且不产生原子氢的反应性形式的N。 此外,通过使用包含在p掺杂的III-V族氮化物层上生长的n型III-V族氮化物材料(例如n-GaN)的覆盖层来实现受体激活,防止发生氢化 在冷却时的下面的p掺杂层。 这种非后生长激活消除了对后续热退火步骤的需要,因为在第一种情况下防止了任何受体钝化。
    • 2. 发明授权
    • Multiple wavelength optical sources
    • 多波长光源
    • US06407855B1
    • 2002-06-18
    • US09430394
    • 1999-10-29
    • Stuart MacCormackDavid M. GiltnerVincent G. DominicDonald R. ScifresBardia PezeshkiEdward C. VailMehrdad ZiariRobert G. Waarts
    • Stuart MacCormackDavid M. GiltnerVincent G. DominicDonald R. ScifresBardia PezeshkiEdward C. VailMehrdad ZiariRobert G. Waarts
    • H01S330
    • H01S3/094H01S3/0675H01S3/08086H01S3/0812H01S3/094042H01S3/302
    • Optical pumping arrangements are provided for the broadband or multiple wavelength pumping of optical sources. Sources may be based on Raman gain media and may use multiple output couplers to couple out different wavelength ranges. Cascaded Raman resonator (CRR) configurations may also be used. Overlapping resonators at different wavelengths may be configured to share gain media, and may have separate portions in separate optical paths. Attenuation filters may also be used that are matched to the gain profile of a gain medium, to flatten the gain spectrum and allow equalization of gain to different output wavelengths. In one embodiment, polarization maintaining fiber is used to develop resonant conditions at different wavelengths in different polarization states. Wideband output gratings may be substituted for narrowband gratings to provide CRR configurations with a broader output band. Broadband amplification may also be provided by using a laser source operating in coherence collapse. The multiple wavelength pumping lends itself to a pumping arrangement in which sources at different wavelengths are combined into separate transmission/gain media such as the different fibers of an optical fiber cable.
    • 提供了用于光源的宽波长或多波长泵浦的光泵浦装置。 源可以基于拉曼增益介质,并且可以使用多个输出耦合器耦合出不同的波长范围。 也可以使用级联拉曼谐振器(CRR)。 可以将不同波长的重叠谐振器配置成共享增益介质,并且可以在单独的光路中具有分离的部分。 还可以使用与增益介质的增益曲线匹配的衰减滤波器,以平坦化增益谱,并允许将增益均衡到不同的输出波长。 在一个实施例中,使用偏振保持光纤来发展不同偏振态的不同波长的谐振条件。 宽带输出光栅可以代替窄带光栅,以提供具有更宽输出频带的CRR配置。 也可以通过使用在相干塌陷中操作的激光源来提供宽带放大。 多波长泵浦本身适用于泵送装置,其中将不同波长的源组合成单独的传输/增益介质,例如光纤电缆的不同光纤。
    • 4. 发明授权
    • III-V arsenide-nitride semiconductor
    • III-V族砷化物半导体
    • US6100546A
    • 2000-08-08
    • US908766
    • 1997-08-07
    • Jo S. MajorDavid F. WelchDonald R. Scifres
    • Jo S. MajorDavid F. WelchDonald R. Scifres
    • C23C16/30H01L33/32H01S5/323H01L33/00H01L31/0304
    • H01S5/3235C23C16/303C30B25/02C30B29/40H01L33/32H01S5/32H01S5/323H01S5/32341H01S5/32366H01S5/32375
    • III-V arsenide-nitride semiconductor are disclosed. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V materials varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V material can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.
    • 公开了III-V族氮化物半导体。 III族元素与V族元素组合,包括至少氮和砷,其浓度选择为与市售的晶体基质匹配。 这些III-V晶体的外延生长导致直接的带隙材料,其可以用于诸如发光二极管和激光器的应用中。 改变III-V材料中元素的浓度会改变带隙,从而可以产生跨越可见光谱的光以及中红外和近紫外线发射体的材料。 相反,这种材料可用于产生获得光并将光转换成电的装置,用于诸如全色光电检测器和太阳能收集器的应用。 III-V材料的生长可以通过在导致总体晶格匹配和带隙期望的序列中生长薄层的元素或化合物来实现。
    • 6. 发明授权
    • Addressable laser vehicle lights
    • 可寻址激光车灯
    • US5713654A
    • 1998-02-03
    • US313757
    • 1994-09-28
    • Donald R. Scifres
    • Donald R. Scifres
    • B60Q1/00F21V8/00
    • G02B6/0001B60Q1/0011Y10S362/80
    • A vehicle lighting system using individually addressable laser diodes or laser arrays coupled to a fiber optic waveguide. A plurality of laser light sources are grouped together and conveniently located on the vehicle. Each laser light source is individually addressable and produces a beam that is coupled to a fiber optic waveguide. The waveguide distally transmits the beam to various optical loads on the vehicle. Alternatively, each fiber optic waveguide may be coupled to receive a beam from more than one laser light source. This allows switching to an operational light source should one fail. In this manner, the operational life of the system is increased.
    • 使用单独可寻址的激光二极管或耦合到光纤波导的激光器阵列的车辆照明系统。 多个激光光源分组在一起并且方便地位于车辆上。 每个激光光源可单独寻址并产生耦合到光纤波导的光束。 波导将光束向远端传输到车辆上的各种光负载。 或者,每个光纤波导可以被耦合以从多于一个的激光光源接收光束。 如果一个失败,这可以切换到操作光源。 以这种方式,系统的使用寿命增加。
    • 8. 发明授权
    • Method of initiating a sequence of pyrotechnic events
    • 启动烟火事件序列的方法
    • US4862802A
    • 1989-09-05
    • US217551
    • 1988-07-11
    • William StreiferDonald R. ScifresJerome R. Klein
    • William StreiferDonald R. ScifresJerome R. Klein
    • F42B3/113
    • F42B3/113
    • A pyrotechnic ignition method in which a semiconductor laser bar or bars containing a number of independent laser array sources deliver optical power in a specified sequence through optical fibers to a set of pyrotechnic elements in order to initiate a sequence of pyrotechnic events, such as a fireworks display, building demolition, emergency ejection sequence, satellite launch, etc. A command signal is transmitted and received, typically by a remote station from the user. The signal is decoded to generate a set of electrical signals representing addresses of individual laser arrays on the laser bar. The laser arrays are activated in the desired sequence in response to the set of electrical signals and emit laser light. This light is transmitted along optical fibers coupled to the individual laser arrays and terminating in pyrotechnic elements. The pyrotechnic elements are ignited in response to optical power received from the optical fibers, typically by direct heating of a detonator. The detonator may also be ignited photochemically or by electric current produced by a photoelectric sensor in response to sensing of the laser light.
    • 一种烟火点火方法,其中包含多个独立的激光阵列源的半导体激光棒或条以规定的顺序通过光纤将光功率提供给一组烟火元件,以便启动烟火事件序列,例如烟火 显示,建筑拆除,紧急排放顺序,卫星发射等。通常由用户的远程站发送和接收命令信号。 信号被解码以产生一组电信号,其表示激光条上各个激光阵列的地址。 响应于该组电信号而激光阵列以期望的顺序被激活并发射激光。 该光沿着耦合到各个激光器阵列的光纤传输并且终止于烟火元件。 烟火元件响应于通过直接加热雷管而从光纤接收的光功率点燃。 响应于对激光的感测,雷管也可以光化学地或由光电传感器产生的电流点燃。
    • 9. 发明授权
    • Semiconductor laser array with single lobed output
    • 具有单叶片输出的半导体激光器阵列
    • US4718069A
    • 1988-01-05
    • US924195
    • 1986-10-27
    • William StreiferDonald R. Scifres
    • William StreiferDonald R. Scifres
    • H01S5/16H01S5/40H01S3/19
    • H01S5/16H01S5/4068
    • A semiconductor laser array having a single lobe far field intensity pattern radiating normal to the laser's light emitting facet. The laser array has a plurality of semiconductor layers disposed over a substrate, at least one of the layers forming an active region for lightwave generation and propagation under lasing conditions. A plurality of adjacent spaced apart optical waveguides defined by waveguides and interconnecting waveguides directly couples lightwaves propagating in each waveguide into an adjacent waveguide. The waveguides are characterized by separations which are not equal at the light emitting facet but are selectively varied so that the sampling function has only a single central lobe. In the preferred embodiment, separations are greatest for edge located and smallest for centrally located waveguides. Interconnecting waveguides connect adjacent waveguides at respective Y-shaped junctions, the junctions being symmetric at least on the output side of the laser.
    • 一种半导体激光器阵列,其具有垂直于激光器的发光小面辐射的单波瓣远场强度图案。 激光器阵列具有设置在衬底上的多个半导体层,所述层中的至少一个在激光条件下形成用于光波生成和传播的有源区域。 由波导和互连波导限定的多个相邻间隔开的光波导直接将在每个波导中传播的光波耦合到相邻波导中。 波导的特征在于在发光小面处不相等但是选择性地变化的分离,使得采样函数仅具有单个中心波瓣。 在优选实施例中,对于位于中心的波导的边缘定位和最小的间隔最大。 互连波导在相应的Y形结处连接相邻的波导,该结至少在激光器的输出侧是对称的。
    • 10. 发明授权
    • Quantized layered structures with adjusted indirect bandgap transitions
    • US4675709A
    • 1987-06-23
    • US820600
    • 1986-01-21
    • Donald R. ScifresRobert D. Burnham
    • Donald R. ScifresRobert D. Burnham
    • H01L29/15H01L33/06H01S5/34H01L29/14H01L29/205H01L29/207H01L33/00
    • H01L33/06B82Y20/00H01L29/155H01S5/34Y10S148/023Y10S148/04Y10S148/072Y10S148/119Y10S148/16
    • A semiconductor quantized layered structure comprising first and second different semiconductor materials comprising compound semiconductors from both the Group III and Group V elements and forming a plurality of alternate layers, each interfaced to its adjacent layer in a semiconductor homojunction or heterojunction. The bottom of the conduction bands of the first and second materials are at different energy levels and the tops of the valence bands of the first and second materials are at different energy levels. The bottoms of the conduction bands of the first and second materials form a plurality of serially arranged potential wells and barriers due to differences in the band structures of the different materials forming alternate layers and the interfacing of the layers forming heterojunctions so that the thinness of the layers will spatially localize electrons to obtain quantized electron states in one dimension transverse to the longitudinal extent of said layers. The invention is characterized in that the first material is an indirect bandgap material and optimized luminescence efficiency of the first material is achieved by adjusting the thickness of the layers comprising the first material to be less than the mean free path of an electron in the first material in the absence of the second material. Three dimensional quantized electron states may be provided in certain layers of the quantized layered structure with the incorporation of an impurity, such as, a donor or acceptor impurity or an isoelectronic impurity forming isoelectronic centers (IEC) in the indirect bandgap semiconductor material. Such an incorporation may be in each layer of the first and second materials or only in the alternate layers of the lower indirect bandgap material. Alternatively, the impurity may be in a predetermined periodic alternate of layers of the same indirect bandgap material, e.g., in one layer out of three, in alternate layers of a plurality of layers or in every n.sup.th layer or every n.sup.th group of layers where n may be any integer.