会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Test site and a method of monitoring via etch depths for semiconductor
devices
    • 测试点和通过半导体器件的蚀刻深度监测的方法
    • US5702956A
    • 1997-12-30
    • US703086
    • 1996-08-26
    • Shu-Lan YingYuan-Chang HuangJue-Jye ChenYuh-Jier Mii
    • Shu-Lan YingYuan-Chang HuangJue-Jye ChenYuh-Jier Mii
    • H01L21/66H01L23/544
    • H01L22/34H01L22/12
    • The present invention provides a test site on a product wafer for measuring via etch depth and a method of monitoring the depth of the vias using the test site. A substrate is provided having a test site area and a circuit area. A test site via is formed in the test site area. The test site via is used in measuring the depth of the insulating layers remaining in a test site via and the depth of the test site via. The measurements are taking using an in-line non-destructible measurement tool, such as an ellipsometer or spectrophotometer. The test site is specifically designed to be large enough to have the via depth measured by an in-line measuring tool. The depth of the oxide remaining in the test site via is measured after the via etch and is correlated to the amount of titanium nitride removed from the tops of the metal lines in the circuit areas. The via etch process is then adjusted to center the via etch at the optimum point to ensure that enough the vias are deep enough without removing too much of the top barrier layer (e.g., titanium nitride) film over the metal lines.
    • 本发明提供了用于通过蚀刻深度测量的产品晶片上的测试位置以及使用测试部位监测通孔的深度的方法。 提供具有测试位置区域和电路区域的衬底。 试验场地通过形成试验场地。 测试点通孔用于测量残留在测试部位的绝缘层的深度和测试部位通孔的深度。 测量正在使用在线不可破坏的测量工具,例如椭偏仪或分光光度计。 测试地点专门设计为足够大,以便通过在线测量工具测量通孔深度。 在通孔蚀刻之后测量残留在测试部位通孔中的氧化物的深度,并且与从电路区域中的金属线的顶部去除的氮化钛的量相关。 然后调整通孔蚀刻工艺以使通孔蚀刻在最佳点处居中,以确保足够的通孔足够深,而不会在金属线上去除太多的顶部阻挡层(例如氮化钛)膜。
    • 2. 发明授权
    • Test site and a method of monitoring via etch depths for semiconductor
devices
    • 测试点和通过半导体器件的蚀刻深度监测的方法
    • US5900644A
    • 1999-05-04
    • US892214
    • 1997-07-14
    • Shu-Lan YingYuan-Chang HuangJue-Jye ChenYuh-Jier Mii
    • Shu-Lan YingYuan-Chang HuangJue-Jye ChenYuh-Jier Mii
    • H01L21/768H01L23/544H01L23/58
    • H01L22/34H01L21/76816
    • The present invention provides a test site on a product wafer for measuring via etch depth and a method of monitoring the depth of the vias using the test site. A substrate is provided having a test site area and a circuit area. A test site via is formed in the test site area. The test site via is used in measuring the depth of the insulating layers remaining in a test site via and the depth of the test site via. The measurements are taking using an in-line non-destructible measurement tool, such as an ellipsometer or spectrophotometer. The test site is specially designed to be large enough to have the via depth measured by an in-line measuring tool. The depth of the oxide remaining in the test site via is measured after the via etch and is correlated to the amount of titanium nitride removed from the tops of the metal lines in the circuit areas. The via etch process is then adjusted to center the via etch at the optimum point to ensure that enough the vias are deep enough without removing too much of the top barrier layer (e.g., titanium nitride) film over the metal lines.
    • 本发明提供了用于通过蚀刻深度测量的产品晶片上的测试位置以及使用测试部位监测通孔的深度的方法。 提供具有测试位置区域和电路区域的衬底。 试验场地通过形成试验场地。 测试点通孔用于测量残留在测试部位的绝缘层的深度和测试部位通孔的深度。 测量正在使用在线不可破坏的测量工具,例如椭偏仪或分光光度计。 测试地点特别设计成足够大,可以通过在线测量工具测量通孔深度。 在通孔蚀刻之后测量残留在测试部位通孔中的氧化物的深度,并且与从电路区域中的金属线的顶部去除的氮化钛的量相关。 然后调整通孔蚀刻工艺以使通孔蚀刻在最佳点处居中,以确保足够的通孔足够深,而不会在金属线上去除太多的顶部阻挡层(例如氮化钛)膜。
    • 9. 发明授权
    • Use of a novel capped anneal procedure to improve salicide formation
    • 使用新型封端退火方法来改善自杀化合物的形成
    • US06211083B1
    • 2001-04-03
    • US09550263
    • 2000-04-17
    • Jiunn-Der YangChaucer ChungYuan-Chang Huang
    • Jiunn-Der YangChaucer ChungYuan-Chang Huang
    • H01L214763
    • H01L29/665H01L21/28518
    • A process for forming a low resistance, titanium disilicide layer, on regions of a MOSFET device, has been developed. The process features the deposition of a capping, silicon oxide layer, on first phase, high resistance, titanium disilicide regions. The capping, silicon oxide layer, featuring a compressive stress, reduces the risk of titanium disilicide regions, formed with a tensile stress, from adhesion loss, or peeling, from underlying regions of the MOSFET device, such as from the top surface of a narrow width, polysilicon gate structure. In addition the capping silicon oxide layer protects underlying titanium disilicide regions from the ambient used during the anneal cycle used to convert the first phase, high resistance, titanium disilicide region, to the second phase, low resistance, titanium disilicide region.
    • 已经开发了在MOSFET器件的区域上形成低电阻二硅化钛层的工艺。 该方法的特征在于在第一相,高电阻,二硅化钛区域上沉积封盖的氧化硅层。 封装,氧化硅层具有压缩应力,降低了形成有拉伸应力的二硅化钛区域从MOSFET器件的下面区域的粘附损失或剥离的风险,例如从狭窄的顶部表面 宽度,多晶硅栅结构。 此外,封盖氧化硅层保护下游的二硅化钛区域与用于将第一相,高电阻,二硅化钛区域转化为第二相,低电阻,二硅化钛区域的退火循环期间使用的环境。
    • 10. 发明授权
    • Method for patterning a polysilicon gate in deep submicron technology
    • 在深亚微米技术中构图多晶硅栅极的方法
    • US6156629A
    • 2000-12-05
    • US164998
    • 1998-10-01
    • Hun-Jan TaoYuan-Chang Huang
    • Hun-Jan TaoYuan-Chang Huang
    • H01L21/28H01L21/311H01L21/3213H01L21/26
    • H01L21/28123H01L21/31116H01L21/31138H01L21/32137Y10S438/952
    • A method of etching polysilicon using an oxide hard mask using a three step etch process. Steps one and two are performed insitu in a high density plasma (e.g., TCP--transformer coupled plasma) oxide etcher. Step 3, the polysilicon etch is performed in a different etcher (e.g., poly RIE etcher). A multi-layered semiconductor structure 35 (FIG. 1) is formed comprising: a substrate 10, a gate oxide layer 14, a polysilicon layer 18, a hard mask layer 22, and a bottom anti-reflective coating (BARC) layer 26 and a resist layer 30.a) in STEP 1, etching the bottom anti-reflective coating (BARC) layer and the hard mask layer by flowing fluorocarbon gas species gas and argon gas, and applying a first TCP Power and a first Bias power;b) in STEP 2, stripping the bottom anti-reflective coating (BARC) layer by flowing a oxygen; and applying a second TCP Power and second Bias power;c) Placing the substrate into a polysilicon high density plasma etcher and performing the following step: in STEP 3--etching the polysilicon layer by flowing chlorine species, oxygen species; Helium species and bromine gas species and applying a third TCP Power and a third Bias power.
    • 使用三步蚀刻工艺使用氧化物硬掩模蚀刻多晶硅的方法。 第一步和第二步在高密度等离子体(例如,TCP-变压耦合等离子体)氧化物蚀刻器中进行。 步骤3,多晶硅蚀刻在不同的蚀刻器(例如,多RIE蚀刻器)中进行。 形成多层半导体结构35(图1),包括:基板10,栅极氧化物层14,多晶硅层18,硬掩模层22和底部抗反射涂层(BARC)层26和 抗蚀剂层30. a)在步骤1中,通过流过碳氟化合物气体种类的气体和氩气蚀刻底部抗反射涂层(BARC)层和硬掩模层,并施加第一TCP电力和第一偏压功率; b)在步骤2中,通过流动氧来汽提底部抗反射涂层(BARC)层; 以及施加第二TCP功率和第二偏置功率; c)将衬底放入多晶硅高密度等离子体蚀刻机中,并执行以下步骤:在步骤3中,通过流动氯物质,氧物种蚀刻多晶硅层; 氦物种和溴气物种,并应用第三个TCP电源和第三个偏置电源。