会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Double crucible for growing a silicon single crystal
    • 用于生长硅单晶的双坩埚
    • US5474022A
    • 1995-12-12
    • US420350
    • 1995-04-11
    • Keisei AbeHisashi FuruyaNorihisa MachidaYoshiaki Arai
    • Keisei AbeHisashi FuruyaNorihisa MachidaYoshiaki Arai
    • C30B15/00C30B15/12C30B35/00
    • C30B29/06C30B15/12Y10T117/1052Y10T117/1056
    • There is provided a double crucible for growing a silicon single crystal in which the partition wall 17 in the shape of ring is concentric with the main crucible 6 in the shape of bottomed cylinder and the lower end of the partition wall 17 is fixed on the inner bottom of the main crucible, and thus the outer crucible 18 and the inner crucible 19 are formed inside the main crucible. The partition wall 17 is uniform in thickness and has introducing holes 20 in its lower part which link the outer crucible with the inner crucible. The partition wall is made so that the inner diameter of its lower part may be smaller than the inner diameter of its upper part. Supposing that A is the diameter of the partition wall at a level of molten silicon, h is a depth from the surface of the molten silicon to the introducing holes, V(out) is an amount of molten silicon stored in the outer crucible, and V(in) is an amount of molten stored in the inner crucible, the relation of D/A=1.5 to 3, 2h/A>1, and V(out)/V(in)=0.4 to 0.9, is satisfied. The invention reduces the number of coarse COPs of 0.3 .mu.m or greater in diameter generated after Sc-1 cleaning on the surface of a silicon wafer made of a single crystal bar grown without making larger in size the furnace of a silicon single crystal continuously growing apparatus.
    • 提供了一种用于生长硅单晶的双坩埚,其中环形分隔壁17与主坩埚6同心,为有底圆筒形,分隔壁17的下端固定在内部 主坩埚的底部,因此外坩埚18和内坩埚19形成在主坩埚的内部。 分隔壁17的厚度均匀,并且在其下部具有连接外坩埚与内坩埚的引入孔20。 分隔壁被制成使得其下部的内径可以小于其上部的内径。 假设A是在熔融硅水平处的分隔壁的直径,h是从熔融硅表面到引入孔的深度,V(out)是存储在外坩埚中的熔融硅的量, V(in)是存储在内坩埚中的熔融量,D / A = 1.5〜3,2h / A> 1,V(out)/ V(in)= 0.4〜0.9的关系成立。 本发明减少了在不增加尺寸的单晶棒制成的硅晶片的表面上在Sc-1清洁之后产生的直径为0.3μm或更大的粗大COP的数量,硅单晶的炉连续生长 仪器。
    • 2. 发明授权
    • Seed crystal of silicon single crystal
    • 硅单晶籽晶
    • US5714267A
    • 1998-02-03
    • US626280
    • 1996-04-04
    • Norihisa MachidaHisashi Furuya
    • Norihisa MachidaHisashi Furuya
    • C30B15/22C30B15/36C30B29/06H01L21/208B32B9/04
    • C30B15/22C30B15/36Y10T428/2457Y10T428/24942Y10T428/31
    • Thermal stress at a point portion of a seed crystal generated when the seed crystal is brought into contact with molten silicon liquid is relieved, thereby to prevent generation of dislocation, to curtail the time of a seed contraction process and to surely support a heavy weight single crystal. A seed crystal of a silicon single crystal used when the single crystal is grown from molten silicon liquid by a Czochralski method is formed to show the heat emissivity of 0.5 or higher and lower than 1.0 at the point portion of the seed crystal. The point portion of the seed crystal is either a part or the whole of the portion that makes contact with the molten silicon liquid or a portion that makes contact with the molten silicon liquid and a portion that makes no contact with the molten silicon liquid in the vicinity of that portion. It is desirable to form at least 16 lines per 1 cm.sup.2 of fine grooves each having a width of 0.3 to 1.0 mm on the surface of the point portion of the seed crystal, to form microscopic irregularity on the surface of the point portion by sandblasting the surface of the point portion of the seed crystal, or to form a SiO.sub.2 film on the surface of the point portion by applying oxidizing treatment to the surface of the point portion of the seed crystal.
    • 当晶种与熔融的硅液接触时产生的晶种的点部分的热应力被缓解,从而防止产生位错,缩短种子收缩过程的时间并确保支持重的单体 水晶。 形成通过切克劳斯基法从熔融硅液体生长单晶时使用的单晶硅晶种,以显示在晶种的点部处的发热率为0.5以上且低于1.0。 晶种的点部分是与熔融硅液体接触的部分或与熔融硅液体接触的部分的一部分或全部,以及与熔融硅液体中的熔融硅液体不接触的部分 该部分附近。 期望在晶种的点部的表面上形成每1cm 2宽度为0.3〜1.0mm的细槽的至少16线,通过喷砂处理在点部的表面上形成微细凹凸 或者通过对晶种的点部的表面进行氧化处理,在点部的表面上形成SiO 2膜。
    • 5. 发明授权
    • Single crystal pulling apparatus
    • 单晶拉丝机
    • US5858087A
    • 1999-01-12
    • US774184
    • 1996-12-26
    • Hiroaki TaguchiTakashi AtamiHisashi FuruyaMichio Kida
    • Hiroaki TaguchiTakashi AtamiHisashi FuruyaMichio Kida
    • C30B15/02C30B15/12C30B35/00
    • C30B15/12C30B15/02Y10T117/1052
    • The principal construction of a single crystal pulling apparatus involves a chamber (gas tight chamber) inside of which is a double crucible 3 for storing a semiconductor melt 21, comprising an outer crucible 11 and an inner crucible 12 communicated with each other, and a source material supply tube 5 suspended from an upper portion of the chamber, and positioned so that granular source material 8 can be introduced from a lower end opening 5a thereof into the semiconductor melt 21 between the outer crucible 11 and the inner crucible 12. An incline portion 13 is provided at a lower end of the source material supply tube 5 on the inner crucible 12 side, for introducing source material 8 discharging from the lower end opening 5a to the semiconductor melt 21 in the vicinity of the side wall of the outer crucible 11. The entry point of the source material 8 is as far as possible from the inner crucible 12, and close to the outer wall of the outer crucible 11, and hence the added source material 8 is melted rapidly by heat from a heater surrounding the outer crucible 11, and any gas bubbles generated as a result of the introduction of the source material 8, are unlikely infuse into the inner crucible 12.
    • 单晶拉制装置的主要结构涉及一个室(气密室),其内部是用于存储半导体熔体21的双坩埚3,其包括彼此连通的外坩埚11和内坩埚12,源 材料供给管5从室的上部悬挂,并且定位成使得颗粒状原料8可以从其下端开口5a引入到外坩埚11和内坩埚12之间的半导体熔体21中。倾斜部分 在内坩埚12侧的原料供给管5的下端部设置有用于将从下端开口5a排出的原料8引导到外坩埚11的侧壁附近的半导体熔融体21 源材料8的入口点尽可能远离内坩埚12,并且靠近外坩埚11的外壁,因此添加的源配合 rial 8通过来自围绕外坩埚11的加热器的热量迅速熔化,并且由于引入源材料8而产生的任何气泡不太可能注入内坩埚12中。
    • 6. 发明授权
    • Method for intrinsic-gettering silicon wafer
    • 本征吸收硅晶片的方法
    • US5674756A
    • 1997-10-07
    • US502053
    • 1995-07-14
    • Yuhki SatohHisashi Furuya
    • Yuhki SatohHisashi Furuya
    • H01L21/322
    • H01L21/3225
    • To provide a silicon-wafer intrinsic-gettering method making it possible to obtain a desired intrinsic-gettering effect through a heat treatment of 1,000.degree. C. or lower and optionally change the thickness of a DZ layer. To obtain a silicon wafer with large intrinsic-gettering effectiveness, a silicon wafer containing oxygen precipitate nuclei is quickly heated from room temperature up to 800.degree. to 1,000.degree. C. and holding the state for 0.5 to 20 min is used. In addition to the above heat treatment step, it is preferable to further use the step of naturally cooling the silicon wafer up to room temperature and the step of heating the naturally-cooled silicon wafer from 500.degree. to 700.degree. C. up to 800.degree. to 1,100.degree. C. at a rate of 2.degree. to 10.degree. C./min and holding the silicon wafer at the temperature for 2 to 48 hr.
    • 提供硅晶片固有吸杂方法,使得可以通过1000℃或更低的热处理获得所需的固有吸收效果,并且可选地改变DZ层的厚度。 为了获得具有大的固有吸收效果的硅晶片,将含有氧沉淀核的硅晶片从室温快速加热至800℃至1000℃,并使用0.5至20分钟的状态。 除了上述热处理工序之外,优选进一步使用将硅晶片自然冷却至室温的步骤,以及将自然冷却的硅晶片从500℃加热至700℃至800℃的步骤 至1100℃,速度为2℃至10℃/分钟,并将硅晶片在该温度下保持2至48小时。
    • 7. 发明授权
    • Method for manufacturing a silicon wafer
    • 硅晶片的制造方法
    • US08529695B2
    • 2013-09-10
    • US13097116
    • 2011-04-29
    • Kazuhiro HaradaHisashi Furuya
    • Kazuhiro HaradaHisashi Furuya
    • C30B13/02
    • C30B35/007C30B15/203C30B29/06
    • Silicon wafer manufacturing method including cleaning polycrystalline silicon with dissolved ozone aqueous solution, cleaning the polycrystalline silicon with fluoric acid or mixed acid of fluoric acid and nitric acid, rinsing the polycrystalline silicon with ultra pure water, melting the rinsed polycrystalline silicon and pulling a single crystal silicon ingot from the molten silicon liquid at a solidification ratio of 0.9 or less, making the pulled single crystal silicon ingot into block-shaped or grain-shaped single crystal silicon, cleaning with dissolved ozone aqueous solution, cleaning with fluoric acid or mixed acid of fluoric acid and nitric acid, rinsing the single crystal silicon with ultra pure water, remelting and pulling a single crystal silicon ingot at a solidification of 0.9 or less, and forming a silicon wafer out of the single crystal silicon ingot.
    • 硅晶片制造方法包括用溶解的臭氧水溶液清洗多晶硅,用氟酸或氟酸和硝酸的混合酸清洗多晶硅,用超纯水冲洗多晶硅,熔化漂洗的多晶硅并拉出单晶 硅熔液以固溶比为0.9以下,使拉晶单晶硅锭成块状或晶粒状单晶硅,用溶解臭氧水溶液清洗,用氟酸清洗或混合酸 氟酸和硝酸,用超纯水冲洗单晶硅,在0.9以下的固化下重熔和拉拔单晶硅锭,并从单晶硅锭中形成硅晶片。