会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method of electroplating semiconductor wafer using variable currents and
mass transfer to obtain uniform plated layer
    • 使用可变电流和质量传递电镀半导体晶片以获得均匀的镀层的方法
    • US06162344A
    • 2000-12-19
    • US393226
    • 1999-09-09
    • Jonathan D. ReidRobert J. ContoliniEdward C. OpocenskyEvan E. PattonEliot K. Broadbent
    • Jonathan D. ReidRobert J. ContoliniEdward C. OpocenskyEvan E. PattonEliot K. Broadbent
    • C25D5/18C25D7/12C25D5/00
    • C25D5/18C25D7/123Y10S205/915
    • In electroplating a metal layer on a semiconductor wafer, the resistive voltage drop between the edge of the wafer, where the electrical terminal is located, and center of the wafer causes the plating rate to be greater at the edge than at the center. As a result of this so-called "terminal effect", the plated layer tends to be concave. This problem is overcome by first setting the current at a relatively low level until the plated layer is sufficiently thick that the resistive drop is negligible, and then increasing the current to improve the plating rate. Alternatively, the portion of the layer produced at the higher current can be made slightly convex to compensate for the concave shape of the portion of the layer produced at the lower current. This is done by reducing the mass transfer of the electroplating solution near the edge of the wafer to the point that the electroplating process is mass transfer limited in that region. As a result, the portion of the layer formed under these conditions is thinner near the edge of the wafer.
    • 在电镀半导体晶片上的金属层时,电极端子所在的晶片边缘与晶片的中心之间的电阻电压降使得电镀速率在边缘比在中心处更大。 作为这种所谓的“终端效应”的结果,镀层倾向于是凹的。 通过首先将电流设置在相对低的电平直到电镀层足够厚以使电阻降可忽略,然后增加电流以提高电镀速率来克服该问题。 或者,可以使在较高电流下产生的层的部分略微凸起,以补偿在较低电流下产生的层的部分的凹形。 这是通过减少靠近晶片边缘的电镀溶液的质量传递来实现的,即在该区域中电镀过程被传质限制。 结果,在这些条件下形成的层的部分在晶片的边缘附近更薄。
    • 5. 发明授权
    • Use of a hard mask for formation of gate and dielectric via nanofilament field emission devices
    • 使用硬掩模通过纳米丝场发射器件形成栅极和电介质
    • US06193870B1
    • 2001-02-27
    • US08847085
    • 1997-05-01
    • Jeffrey D. MorseRobert J. Contolini
    • Jeffrey D. MorseRobert J. Contolini
    • C25D502
    • H01J9/025C25D1/04H01L21/0332H01L21/31116H01L21/31144
    • A process for fabricating a nanofilament field emission device in which a via in a dielectric layer is self-aligned to gate metal via structure located on top of the dielectric layer. By the use of a hard mask layer located on top of the gate metal layer, inert to the etch chemistry for the gate metal layer, and in which a via is formed by the pattern from etched nuclear tracks in a trackable material, a via is formed by the hard mask will eliminate any erosion of the gate metal layer during the dielectric via etch. Also, the hard mask layer will protect the gate metal layer while the gate structure is etched back from the edge of the dielectric via, if such is desired. This method provides more tolerance for the electroplating of a nanofilament in the dielectric via and sharpening of the nanofilament.
    • 一种制造纳米丝场发射器件的方法,其中电介质层中的通孔与位于介电层顶部的栅极金属通孔结构自对准。 通过使用位于栅极金属层顶部的硬掩模层,对栅极金属层的蚀刻化学物质是惰性的,并且其中通过可追踪材料中蚀刻的核磁道的图案形成通孔,通孔是 由硬掩模形成将消除电介质通孔蚀刻期间栅极金属层的任何侵蚀。 此外,如果需要的话,硬掩模层将保护栅极金属层,同时栅极结构从电介质通孔的边缘被回蚀。 该方法提供了对纳米丝在电介质通孔中的电镀和纳米丝的锐化的更大的公差。
    • 7. 发明授权
    • Formation of nanofilament field emission devices
    • 纳米丝场发射装置的形成
    • US6045678A
    • 2000-04-04
    • US847088
    • 1997-05-01
    • Jeffrey D. MorseRobert J. ContoliniRonald G. MusketAnthony F. Bernhardt
    • Jeffrey D. MorseRobert J. ContoliniRonald G. MusketAnthony F. Bernhardt
    • C25D7/12C25D5/02
    • C25D7/12
    • A process for fabricating a nanofilament field emission device. The process enables the formation of high aspect ratio, electroplated nanofilament structure devices for field emission displays wherein a via is formed in a dielectric layer and is self-aligned to a via in the gate metal structure on top of the dielectric layer. The desired diameter of the via in the dielectric layer is on the order of 50-200 nm, with an aspect ratio of 5-10. In one embodiment, after forming the via in the dielectric layer, the gate metal is passivated, after which a plating enhancement layer is deposited in the bottom of the via, where necessary. The nanofilament is then electroplated in the via, followed by removal of the gate passification layer, etch back of the dielectric, and sharpening of the nanofilament. A hard mask layer may be deposited on top of the gate metal and removed following electroplating of the nanofilament.
    • 一种制造纳米丝场发射器件的方法。 该方法能够形成高纵横比,用于场致发射显示器的电镀纳米丝结构器件,其中通孔形成在电介质层中,并且与电介质层顶部的栅极金属结构中的通孔自对准。 电介质层中通孔的理想直径约为50-200nm,纵横比为5-10。 在一个实施例中,在电介质层中形成通孔之后,栅极金属被钝化,之后必要时在通孔的底部沉积电镀增强层。 然后将纳米丝电镀在通孔中,随后除去栅极钝化层,回蚀电介质,并使纳米丝的锐化。 硬掩模层可以沉积在栅极金属的顶部上,并在纳米丝的电镀之后去除。