会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • NEURAL NETWORK WITH BACK PROPAGATION CONTROLLED THROUGH AN OUTPUT CONFIDENCE MEASURE
    • 通过输出信心测量来控制反向传播的神经网络
    • WO1991017520A1
    • 1991-11-14
    • PCT/US1991003003
    • 1991-05-01
    • EASTMAN KODAK COMPANY
    • EASTMAN KODAK COMPANYGABORSKI, Roger, Stephen
    • G06K09/66
    • G06K9/66G06N3/084
    • Neural network, particularly one suited for use in optical character recognition (OCR) systems, which through controlling back propagation and adjustment of neural weight and bias values through an output confidence measure, smoothly, rapidly and accurately adapts its response to actual changing input data (characters). Specifically, the results of appropriate actual unknown input characters, which have been recognized with an output confidence measure that lies within a pre-defined range, are used to adaptively re-train the network during pattern recognition. By limiting the maximum value of the output confidence measure at which this re-training will occur, the network re-trains itself only when the input characters have changed by a sufficient margin from initial training data such that this re-training is likely to produce a subsequent noticeable increase in the recognition accuracy provided by the network. Output confidence is measured as a ratio between the highest and next highest values produced by output neurons in the network.
    • 神经网络,特别适用于光学字符识别(OCR)系统,其通过控制反向传播和通过输出置信度测量来调整神​​经重量和偏差值,平滑,快速和准确地将其响应适应于实际改变的输入数据(OCR) 字符)。 具体地说,在模式识别期间,使用已经用位于预定义范围内的输出置信度量来识别的适当的实际未知输入字符的结果被用于自适应地重新训练网络。 通过限制出现这种重新训练的输出置信度量的最大值,只有当输入字符从初始训练数据改变了足够的余量以后,网络才能自动重新训练,以便这种再培训可能产生 网络提供的识别精度随后明显增加。 输出置信度被测量为由网络中的输出神经元产生的最高和最高值之间的比率。
    • 10. 发明申请
    • PATTERN RECOGNITION SYSTEM
    • 模式识别系统
    • WO1987003399A1
    • 1987-06-04
    • PCT/US1986002553
    • 1986-11-26
    • THE TRUSTEES OF BOSTON UNIVERSITYCARPENTER, Gail, A.GROSSBERG, Stephen
    • THE TRUSTEES OF BOSTON UNIVERSITY
    • G06K09/66
    • G06K9/6222
    • A self-categorizing pattern recognition system includes an adaptive filter for selecting a category in response to an input pattern. A template is then generated in response to the selected category and a coincident pattern indicating the intersection between the expected pattern and the input pattern is generated. The ratio between the number of elements in the coincident pattern to the number of elements in the input pattern determines whether the category is reset. If the category is not reset, the adaptive filter and template may be modified in response to the coincident pattern. Reset of the selected category is inhibited if no expected pattern is generated. Weighting of the adaptive filter in response to a coincident pattern is inversely related to the number of elements in the input pattern. The selected categories reset where a reset function is less than a vigilance parameter which may be varied in response to teaching events.
    • 自分类模式识别系统包括用于响应于输入模式选择类别的自适应滤波器。 然后响应于所选择的类别生成模板,并且生成指示预期图案和输入图案之间的交点的重合图案。 重合模式中的元素数与输入模式中的元素数之间的比率决定了类别是否被重置。 如果该类别不被重置,则可以响应于重合模式来修改自适应滤波器和模板。 如果不产生预期的模式,则禁止所选类别的复位。 响应于一致的图案的自适应滤波器的权重与输入图案中的元素的数量成反比。 所选择的类别在复位功能小于可响应于教学事件而改变的警戒参数的情况下重置。