会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • PRODUCING ELECTRICAL ENERGY USING REVERSIBLE COGENERATION-W (CHP-W) METHOD INSTEAD OF COGENERATION (CHP)
    • 使用可逆凝结的W(CHP-W)方法生产电能(CHP)
    • WO2017204758A1
    • 2017-11-30
    • PCT/TR2016/050323
    • 2016-09-01
    • POLKAR ORMAN URUNLERI VE ENERJI A. S
    • POLAT, HarunPOLAT, YusufDALGIN, Ahmet
    • F01K17/00
    • F01K17/00Y02E20/14Y02P80/15
    • Energy production centers (26) in terms of industrial scale (14) are established in industrial institutions in order to supply heat (7) and steam energy (18-19) which is required during the various phases of industrial production. They are called widely as boiler (26). The boilers (26), have been benefited for many years, have been used only to generate demanding heat and steam of production processes (14). Since produced energy (7) has never been regenerated as being transformed itself (7) (8- 18-19-21) in any phases, boilers caused huge energy loses (29). After this period a new system has been developed called as Co-generation (CHP). This system has advanced on the basis of two concepts. The necessary superheated steam for the electricity generation is produced either from the flue gas (29) whose CO2-CO ratio is higher and which is forced to pull out from the boiler or from the heat that remains in the production line (14) as inert high heat energy. In addition to these similar two concepts in terms of CHP, there is another method that can be used for generating of superheated steam that is to set superheater exchangers into boiler. Until now, nobody has thought over placing electrical energy generation (10-11) into the center of boiler (26) necessary for an industrial scale production (14) where the rest system and energy needs (4-3-5) (16- 19) are dependently designed. Whereas when this is done, with the same boiler size and the same amount of fuel, much more electrical energy would be generated than the electrical energy (10-11) that is generated by Cogeneration-CHP. Moreover, the needs of whole heat (7) and steam (8-18-19) would be covered that are necessary for production line. The structure of boiler (26) is designed for generation of electrical energy (10-11) and if getting gained superheated steam (8-9) and/or steam sorts (16) are reused in the various phases of the production line (18- 19), the ratio of unit over time of electrical energy will ascend at least 60% than the generation by Cogeneration (CHP). In short, our invention of electrical generation (10-11) is based on considering of boilers' inputs (26) (7) (8- 9) instead of considering the boilers' outputs. Considering of the boilers' inputs means that redesigning of boiler structure (26), efficiency of boiler (7), usage of energy and operation (4-3-5) (8-9- 16) and in the way covering to required heat (7) and steam energy (8-18-19) too, in the production line by using the fundamental principles of Cogeneration-W method. What we do in this sense is that the discovery of Cogeneration-W. Our invention has developed as an alternative system solution to cogeneration (CHP). But, energy gaining (4-3-5) (16) and capacity of electricity generation (10-11) originated from energy gaining is much more on it and because new system changes to the current method, our system has more productivity and efficiency features, hence exceeding to a scope in the contents.
    • 按工业规模(14)计算的能源生产中心(26)在工业机构中建立,以供应各阶段所需的热量(7)和蒸汽能量(18-19) 的工业生产。 他们被广泛称为锅炉(26)。 锅炉(26)多年来一直受益,仅用于生产生产过程所需的热量和蒸汽(14)。 由于产生的能量(7)在任何阶段都不会再生成自身(7)(8-18-19-21),因此锅炉会造成巨大的能量损失(29)。 在这段时间后,一种新系统被称为热电联产(CHP)。 这个系统是在两个概念的基础上推进的。 用于发电的必要的过热蒸汽由CO 2 -CO比较高并且被迫从锅炉中或从生产线(14)中剩余的热量中抽出的烟气(29)产生,作为惰性 高热量。 除了热电联产这两个类似的概念之外,还有另一种方法可用于生成过热蒸汽,即将过热交换器设置为锅炉。 到目前为止,没有人考虑将电能生产(10-11)置于工业规模生产所需的锅炉(26)的中心(14),其余系统和能源需要(4-3-5)(16- 19)是独立设计的。 然而,当这样做时,在相同的锅炉尺寸和相同的燃料量下,将产生比由热电联产CHP产生的电能(10-11)多得多的电能。 此外,全热(7)和蒸汽(8-18-19)的需求将覆盖生产线所必需的。 锅炉(26)的结构设计用于产生电能(10-11),并且如果获得过热蒸汽(8-9)和/或蒸汽分选(16)在生产线的不同阶段(18 - 19),电能的单位时间比率将上升至至少60%,比热电联产(CHP)的产量高。 简而言之,我们发电(10-11)是基于考虑锅炉的输入(26)(7)(8-9)而不是考虑锅炉的输出。 考虑到锅炉的投入意味着重新设计锅炉结构(26),锅炉效率(7),能源使用和运行(4-3-5)(8-9-16)以及覆盖所需热量 (7)和蒸汽能量(8-18-19),在生产线上采用Cogeneration-W方法的基本原理。 我们在这个意义上做的是Cogeneration-W的发现。 我们的发明已经发展成为热电联产(CHP)的替代系统解决方案。 但是,能源获得(4-3-5)(16)和发电能力(10-11)源于能源获得更多,而且由于新系统改变了现有方法,我们的系统具有更高的生产力和效率 功能,因此超出了内容范围。
    • 4. 发明申请
    • MICROEMULSION-ENABLED HEAT TRANSFER
    • 微乳液启动热传递
    • WO2015026825A1
    • 2015-02-26
    • PCT/US2014/051690
    • 2014-08-19
    • UNIVERSITY OF MARYLAND
    • YANG, BaoRADERMACHER, ReinhardSHI, Baolan (Jessica)
    • F28B1/02F28F23/00C09K5/04F01K9/00F01K19/04F01K17/00F25B35/02F25B15/00F25B30/04
    • F25B35/02C09K5/047F01K9/003F01K17/005F01K23/02F22B1/08F25B15/00F28B1/02F28D2021/0066F28F23/00
    • A heat transfer apparatus (102) including: (i) an evaporation chamber (116) in heat transfer communication with a first heat source, wherein the first heat source causes a liquid in the evaporation chamber (116) to evaporate into a gas; (ii) an adsorption/absorption chamber (134) in fluid communication with the evaporation chamber (116) and in heat transfer communication with a cooling source, the adsorption/absorption chamber (134) containing a microemulsion which adsorbs/absorbs the gas, when cooled, as droplets of the liquid sequestered within the microemulsion to form a used microemulsion; and (iii) a desorption chamber (136) in fluid communication with the adsorption/absorption chamber (134) and the evaporation chamber (116), and in heat transfer communication with a second heat source capable of desorbing the liquid droplets out of the used microemulsion as the liquid, without vaporizing the liquid, to form a regenerated microemulsion. Also, methods of using the heat transfer apparatus.
    • 一种传热装置(102),包括:(i)与第一热源传热连通的蒸发室(116),其中所述第一热源使所述蒸发室(116)中的液体蒸发成气体; (ii)与所述蒸发室(116)流体连通并与冷却源传热连通的吸附/吸收室(134),所述吸附/吸收室(134)含有吸附/吸收气体的微乳液,当所述吸附/吸收室 冷却,作为微乳液中的液滴滴在微乳液中以形成使用的微乳液; 和(iii)与吸附/吸收室(134)和蒸发室(116)流体连通的解吸室(136),并且与能够将液滴从所用的 微乳液作为液体,不蒸发液体,形成再生微乳液。 另外,使用传热装置的方法。
    • 5. 发明申请
    • HYBRID THERMAL CYCLE WITH INDEPENDENT REFRIGERATION LOOP
    • 具有独立制冷循环的混合热循环
    • WO2014004597A1
    • 2014-01-03
    • PCT/US2013/047750
    • 2013-06-26
    • HARRIS CORPORATION
    • PALMER, William, R.
    • F01K9/00F01K17/00F01K19/04F01K25/06
    • F01K9/003F01K17/005F01K19/04F01K25/06
    • Work is produced from heat in a continuous cycle (100). A flow of first working fluid (F1) is provided to a high pressure boiler (203) to produce (104) a flow of first working fluid vapor. A second working fluid (F2) in vaporous form is compressed (106), after which a third working fluid is formed (108) by mixing the first working fluid vapor and the second working fluid. Thermal energy is transferred (110) directly between the first and second working fluids in the mixing chamber (206) exclusive of any intervening structure. A refrigeration loop (500) containing a fourth working fluid extracts thermal energy from a low grade thermal energy source (501) and moves the thermal energy to the first working fluid and/or the second working fluid.
    • 工作是从连续循环(100)中的热量产生的。 第一工作流体(F1)的流动被提供给高压锅炉(203)以产生(104)第一工作流体蒸汽的流动。 蒸气形式的第二工作流体(F2)被压缩(106),之后通过混合第一工作流体蒸气和第二工作流体形成第三工作流体(108)。 热能直接在混合室(206)中的第一和第二工作流体之间转移(110),不包括任何中间结构。 包含第四工作流体的制冷回路(500)从低级热能源(501)中提取热能,并将热能移动到第一工作流体和/或第二工作流体。
    • 8. 发明申请
    • 定容加熱器利用装置
    • 使用恒定体积加热器的装置
    • WO2012131860A1
    • 2012-10-04
    • PCT/JP2011/057487
    • 2011-03-27
    • 一般社団法人太陽エネルギー研究所佐藤賢治
    • 佐藤賢治
    • F22B3/00F01K3/00F01K17/00F01K19/00F01K21/00F01K25/00F02C1/00F22B1/00F24J2/42
    • F01K13/00F24S90/00Y02E10/40
    • 【課題】 逆カルノーサイクルとされている冷凍サイクルの成績係数の向上と熱機関の熱効率の向上が求められている。 熱機関の熱効率向上のため蒸気タービンの水蒸気温度が高温化している。 断熱圧縮機の効率の向上、騒音の防止、機械損失の低減、が求められている。 ボイラー使用エネルギーの削減、蒸気タービンの発電熱効率の向上、自動車などの装置の燃費向上が求められている。 【解決手段】 逆カルノーサイクルとされている冷凍サイクルの断熱圧縮過程を定容加熱過程に置き換えることで冷凍サイクルの成績係数が向上する。 定容加熱器は熱力学のボイルシャルルの容積一定の加熱変化を利用した物である。 定容加熱器利用のヒートポンプサイクルとカルノーサイクル熱機関の組み合わせで理論総合変換熱効率1の熱利用装置が実現する。 冷凍サイクルの低温熱源と熱機関の低温熱源を使い分ける事で総合変換熱効率1以上の熱利用装置が実現できる。
    • [问题]需要改进作为反向卡诺循环的制冷循环的性能系数,并且需要改善热发动机的热效率。 为了提高热机的热效率,使蒸汽轮机的水汽蒸气温度达到高温。 要求提高效率,防止噪音,减少绝热压缩机的机械损失。 需要减少锅炉使用的能量的量,以提高汽轮机的电效率,以及改善汽车等装置的燃料消耗。 [解决方案]通过用恒定体积加热过程替换作为反向卡诺循环的制冷循环的绝热压缩过程来提高制冷循环的性能系数。 恒定体积加热器利用Boyle-Charles的热力学定律中的固定体积的热变化。 通过使用恒定体积加热器和卡诺循环热力发动机的热泵循环的组合来实现理论总转换能量效率为1的热利用装置。 通过适当地使用制冷循环的低温热源和热机的低温热源,实现总转换能量为1以上的热利用装置。