会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • SUPERPARAMAGNETIC COBALT IRON OXYGEN NANOPARTICLES
    • 超级钴钴氧化物纳米材料
    • WO2007108980A1
    • 2007-09-27
    • PCT/US2007/006164
    • 2007-03-12
    • NDSU RESEARCH FOUNDATIONSCHULZ, Douglas, LloydSAILER, Robert, A.CARUSO, Anthony, Nicholas
    • SCHULZ, Douglas, LloydSAILER, Robert, A.CARUSO, Anthony, Nicholas
    • C04B35/26C04B35/28C04B35/32C04B35/36
    • C01G51/00B82Y30/00C01G49/0018C01G49/0072C01G49/08C01G53/00C01G53/006C01P2002/32C01P2002/60C01P2002/72C01P2004/04C01P2004/32C01P2004/64C01P2006/42
    • Thermal treatment of transition metal ferrite nanoparticles at moderate temperatures (e.g., 500°C to 8500C) provides materials with unanticipated magnetic properties. AxFe3. xθ4-y nanoparticles, e.g., with metal ratio from x = 0.4 to 1.0, can be prepared according to standard solution micelle syntheses. While the as-synthesized materials, such as CoFe2O4 nanoparticles, appeared to be comprised of mainly the magnetite phase (e.g., CoFe2O4) by x-ray diffraction, multiphase materials (e.g., α-Fe and/or zero valent CoFe + CoFe2O4) were observed after the transition metal ferrite nanoparticles were subjected to thermal treatment under nitrogen. Magnetization as a function of applied field and temperature reveal variations in saturation magnetization, coercivity, blocking temperature and Verwey transition temperature dependence as a function of composition. Extremely high saturation magnetization (180 emu/g) with low coercivity (30 Oe or lower) can be achieved with such compositions, which drastically deviates from bulk values of the phases which make up the material and may be attributed to the reduced surface spin disorder and low anisotropy energy induced as a function of the fabrication procedure.
    • 过渡金属铁氧体纳米颗粒在中等温度(例如500℃至8500℃)下的热处理提供具有意料之外的磁性能的材料。 AxFe3。 可以根据标准溶液胶束合成制备x 4-y纳米颗粒,例如金属比例为x = 0.4至1.0。 虽然合成后的材料(如CoFe2O4纳米颗粒)通过X射线衍射显示主要由磁铁矿相(如CoFe2O4)组成,但多相材料(如a-Fe和/或零价CoFe + CoFe2O4)分别为 在过渡金属铁氧体纳米颗粒在氮气下进行热处理后观察到。 作为施加场和温度的函数的磁化揭示了作为组成的函数的饱和磁化强度,矫顽力,阻挡温度和Verwey转变温度依赖性的变化。 这种组合物可以实现具有低矫顽力(30 Oe或更低)的非常高的饱和磁化强度(180emu / g),这大大偏离构成材料的相的体积值,并且可归因于减少的表面自旋紊乱 并且作为制造过程的函数引起的低各向异性能量。