会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明申请
    • SYSTEM AND METHODS FOR COMPUTERIZED MACHINE-LEARNING BASED AUTHENTICATION OF ELECTRONIC DOCUMENTS INCLUDING USE OF LINEAR PROGRAMMING FOR CLASSIFICATION
    • 用于基于计算机学习的电子文档的认证的系统和方法,包括使用线性编程进行分类
    • WO2013014667A2
    • 2013-01-31
    • PCT/IL2012050265
    • 2012-07-23
    • AU10TIX LTDDOLEV GUYMARKIN SERGEYBAR-NISSIM AVIUZIEL ASHER
    • DOLEV GUYMARKIN SERGEYBAR-NISSIM AVIUZIEL ASHER
    • G06K9/62
    • G06N99/005G06K9/00442G06K9/6276
    • Electronic document classification comprising providing training documents sorted into classes; linear programming including selecting inputs which maximize an output, given constraints on inputs, the output maximized being a difference between: a. first estimated probability that a document instance will be correctly classified, by a classifier corresponding to given inputs, as belonging to its own class, and b. second estimated probability that document instance will be classified, by the classifier, as not belonging to its own class; and classifying electronic document instances into classes, using a preferred classifier corresponding to the inputs selected by the linear programming. A computerized electronic document forgery detection method provides training documents and uses a processor to select value-ranges of non-trivial parameters, such that selected values-range(s) of parameters are typical to an authentic document of given class, and atypical to a forged document of same class.
    • 电子文件分类包括提供分类为课堂的培训文件; 线性规划包括选择使输出最大化的输入,给定输入的约束,输出最大化为以下之间的差异:a。 通过与给定输入对应的分类器将文档实例正确分类为属于其自己的类的第一估计概率,以及b。 文档实例将被分类器分类为不属于其自己的类别的第二估计概率; 以及使用对应于线性节目选择的输入的优选分类器将电子文档实例分类成类。 计算机化的电子文件伪造检测方法提供培训文件,并使用处理器来选择非平凡参数的值范围,使得选择的值 - 参数范围对于给定类别的真实文件是典型的,并且对于非典型的 伪造同类文件。
    • 8. 发明申请
    • METHOD AND CIRCUITS TO VIRTUALLY INCREASE THE NUMBER OF PROTOTYPES IN ARTIFICIAL NEURAL NETWORKS
    • 方法和电路虚拟增加人工神经网络中的原型数
    • WO03012737A2
    • 2003-02-13
    • PCT/EP0208473
    • 2002-07-11
    • IBMIBM FRANCE
    • IMBERT DE TREMIOLLES GHISLAINTANNHOF PASCAL
    • G06N3/08G06K9/62G06N3/00G06N3/063
    • G06K9/6276G06N3/063
    • There is disclosed an improved artificial neural network (ANN) (120') comprised of a conventional ANN (120), a database block (220) and a compare & update circuit (230). The conventional ANN is formed by a plurality of n neurons (130), each neuron having a prototype memory (140) dedicated to store a prototype and a distance evaluator (150) to evaluate the distance between the input pattern presented to the ANN and the prototype stored therein. The data base block is comprised of three data bases: a first data base (222) containing all the p prototypes arranged in s slices, each slice being capable to store up to n prototypes, a second data base (224) being capable to store the q input patterns to be presented to the ANN (queries) and a third data base (226) being capable to store the q distances resulting of said evaluation performed during the recognition/classification phase. The role of the compare & update circuit is to compare said distance with the distance previously found for the same input pattern (or pre-existing at initialization) and based upon the result of that comparison, to update or not said distance previously stored.
    • 公开了一种由常规ANN(120),数据库块(220)和比较和更新电路(230)组成的改进的人造神经网络(ANN)(120')。 常规ANN由多个n个神经元(130)形成,每个神经元具有专用于存储原型的原型存储器(140)和距离评估器(150),以评估呈现给ANN的输入模式与 原型存储在其中。 数据库块由三个数据库组成:第一数据库(222),包含以s个片段排列的所有p个原型,每个片段能够存储多达n个原型,第二数据库(224)能够存储 要呈现给ANN(查询)的q个输入模式和第三数据库(226)能够存储在识别/分类阶段期间进行的所述评估的结果。 比较和更新电路的作用是将所述距离与先前针对相同输入模式找到的距离进行比较(或者在初始化时预先存在),并且基于该比较的结果来更新或不更新先前存储的所述距离。
    • 9. 发明申请
    • PATTERN RECOGNITION SYSTEM WITH STATISTICAL CLASSIFICATION
    • 具有统计分类的模式识别系统
    • WO1995008159A1
    • 1995-03-23
    • PCT/US1994010527
    • 1994-09-16
    • MASSACHUSETTS INSTITUTE OF TECHNOLOGYMENON, Murali, M.BOUDREAU, Eric, R.
    • MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    • G06K09/62
    • G06K9/6222G06K9/6276
    • A pattern recognition system is described. During training, multiple training input patterns from multiple classes of subjects are grouped into clusters within categories by computing correlations between the training patterns and present category definitions. After training, each category is labeled in accordance with the peak class of patterns received within the cluster of the category. If the domination of the peak class over the other classes in the category exceeds a preset threshold, then the peak class defines the category. If the contrast does not exceed the threshold, then the category is defined as unknown. The class statistics for each category are stored in the form of a training class histogram for the category. During testing, frames of test data are received from a subject and are correlated with the category definitions. Each frame is associated with the training class histogram for the closest correlated category. For multiple-frame processing, the histograms are combined into a single observation class histogram which identifies the subject with its peak class within a predefined degree of confidence. In a multiple-channel configuration, the training patterns and testing patterns are divided into multiple features.
    • 描述了模式识别系统。 在训练期间,通过计算训练模式与当前类别定义之间的相关性,将多类科目的多种训练输入模式分组到分类内。 经过培训,每个类别都按照类别集群内收到的模式的最高等级标注。 如果峰值类别与类别中其他类别的统治超过预设阈值,则峰值类定义该类别。 如果对比度不超过阈值,则该类别被定义为未知。 每个类别的类统计信息以类别的训练类直方图的形式存储。 在测试期间,从主题接收测试数据的帧,并与类别定义相关。 每个帧与最近相关类别的训练类直方图相关联。 对于多帧处理,将直方图组合成单个观察类直方图,其在预定义的置信度内以其峰值类别识别被摄体。 在多通道配置中,训练模式和测试模式分为多个特征。