会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • COMPUTATIONALLY-ASSISTED MULTI-HETERODYNE SPECTROSCOPY
    • 计算辅助多异构体光谱
    • WO2017044604A1
    • 2017-03-16
    • PCT/US2016/050744
    • 2016-09-08
    • MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    • BURGHOFF, DavidYANG, YangHU, Qing
    • G01J3/28G01J3/42G01J3/433G01J3/453G01J9/04
    • G01J3/28G01J3/10G01J3/108G01J3/2803G01J3/42G01J3/4531G01J9/04G01J2003/102G01J2003/284
    • According to one aspect, a multi-heterodyne system (10) is disclosed, which comprises a first laser source (12) for generating multi-mode radiation (LB1) having a frequency spectrum having a first plurality of phase coherent frequencies, and a second laser source (14) for generating multi-mode radiation (LB2) having a frequency spectrum having a second plurality of phase coherent frequencies. The system further comprises at least one detector (22) for detecting a combination of the multi-mode radiation generated by the first and second laser sources so as to provide a multi-heterodyne signal having a frequency spectrum characterized by a plurality of beat frequencies, each beat frequency corresponding to a pairwise difference in the first and second plurality of phase coherent frequencies. The system further comprises an analyzer (24) for receiving said multi-heterodyne signal and configured to employ a predictive model of the multi-heterodyne signal to provide estimates of any of phase error and timing error associated with the beat frequencies.
    • 根据一个方面,公开了一种多外差系统(10),其包括用于产生具有第一多个相位相干频率的频谱的多模辐射(LB1)的第一激光源(12) 用于产生具有第二多个相位相干频率的频谱的多模辐射(LB2)的激光源(14)。 该系统还包括至少一个检测器(22),用于检测由第一和第二激光源产生的多模式辐射的组合,以便提供具有由多个拍频表征的频谱的多外差信号, 每个拍频对应于第一和第二多个相位相干频率中的成对差。 该系统还包括用于接收所述多外差信号并被配置为使用多外差信号的预测模型的分析器(24),以提供与拍频相关联的任何相位误差和定时误差的估计。
    • 2. 发明申请
    • A COMPACT INTERFEROMETER
    • 紧凑型干扰仪
    • WO2016174127A1
    • 2016-11-03
    • PCT/EP2016/059472
    • 2016-04-28
    • IMEC VZWSAMSUNG ELECTRONICS CO. LTD.
    • CLAES, Tom
    • G01J3/453G01J3/02G02B6/293
    • G01J3/0218G01B9/02015G01B9/02083G01J3/021G01J3/0259G01J3/44G01J3/4531G02B6/29346G02B6/29349
    • An interferometer (100) comprising a multimode waveguide (120) to which an input waveguide (110) is coupled at one side thereof. A first waveguide (130) is optically coupled to a second side of the multimode waveguide (120), and is terminated by a first waveguide mirror (150). A second waveguide (140) may be optically coupled to a second side of the multimode waveguide (120) and terminated by a second waveguide mirror (160), or a second waveguide mirror (160) may be directly optically coupled to a second side of the multimode waveguide (120). The multimode waveguide is adapted to distribute a light signal from the input waveguide (110) towards the first (150) and second (160) waveguide mirror via the first waveguide (130) and, if present, via the second waveguide (140). The interferometer comprises at least one signal readout structure (170) partly or completely integrated in the multimode waveguide and positioned for receiving reflected light from the first (150) and/or second (160) waveguide mirror with a power that depends on the phase difference between the two reflected waves.
    • 一种干涉仪(100),包括多模波导(120),输入波导(110)在其一侧耦合到该多模波导(120)。 第一波导(130)光学耦合到多模波导(120)的第二侧,并且被第一波导反射镜(150)端接。 第二波导(140)可以光学耦合到多模波导(120)的第二侧并且被第二波导反射镜(160)端接,或者第二波导反射镜(160)可以直接光耦合到第二波导 多模波导(120)。 多模波导适于经由第一波导(130)和经由第二波导(140)将来自输入波导(110)的光信号分配到第一(150)和第二(160)波导反射镜。 所述干涉仪包括至少一个信号读出结构(170),其部分地或完全地集成在所述多模波导中并且被定位成用于接收来自所述第一(150)和/或第二(160)波导反射镜的反射光,其具有取决于相位差的功率 两个反射波之间。
    • 4. 发明申请
    • REAL-TIME BIREFRINGENT IMAGING FOURIER TRANSFORM SPECTROMETER BASED ON DIFFERENTIAL STRUCTURE
    • 基于差异结构的实时双向成像傅立叶变换光谱仪
    • WO2015158181A1
    • 2015-10-22
    • PCT/CN2015/072779
    • 2015-02-11
    • HARBIN INSTITUTE OF TECHNOLOGY
    • JIN, PengZHU, ShuaishuaiZHANG, YuLIN, Jie
    • G01J3/447G01J3/45
    • G01J3/447G01J3/0205G01J3/0208G01J3/0224G01J3/0256G01J3/2823G01J3/453G01J3/4531
    • A real-time birefringent imaging Fourier transform spectrometer based on differential structure is provided. The invention sets a polarization beam splitter to add an imaging branch. Meanwhile, the invention alters the conventional optical structure to the differential structure by setting another polarization beam splitter. Taking the difference between these two interferogram obtained by two branches of differential structure as the final interferogram and performing the required post-processing calculations produces the spectrum at each pixel. In this invention, common-mode error is intensively restrained due to the differential structure, and 50% of the optical loss is avoided because of casting off the analyzer; a high spatial resolution, high spectral resolution image is acquired by combining the high spatial resolution, colorful image with the low spatial resolution, high spectral resolution image.
    • 提供了基于差分结构的实时双折射成像傅里叶变换光谱仪。 本发明设置偏振分束器以添加成像分支。 同时,本发明通过设置另一个偏振分束器将传统的光学结构改变为差分结构。 将由差分结构的两个分支获得的这两个干涉图之间的差作为最终干涉图并执行所需的后处理计算,在每个像素处产生光谱。 在本发明中,由于差分结构,共模误差被强烈地抑制,并且由于分析仪的脱落而避免了50%的光损耗; 通过将高空间分辨率,彩色图像与低空间分辨率,高光谱分辨率图像相结合,获得高空间分辨率,高光谱分辨率图像。
    • 7. 发明申请
    • FABRY-PEROT FOURIER TRANSFORM SPECTROMETER
    • FABRY-PEROT FOURIER变换光谱仪
    • WO2011069013A1
    • 2011-06-09
    • PCT/US2010/058794
    • 2010-12-02
    • UNIVERSITY OF HAWAIILUCEY, Paul
    • LUCEY, Paul
    • G01J3/45
    • G01J3/26G01J3/14G01J3/4531
    • A spatial Fourier transform spectrometer is disclosed (e.g., 350). The Fourier transform spectrometer includes a Fabry-Perot interferometer (e.g., 320, 420, 520) with first and second optical surfaces (e.g., 454, 458, and 554, 558). The gap (e.g., 462, 562) between the first and second optical surfaces spatially varies in a direction that is orthogonal to the optical axis (e.g., 466, 566, 666) of the Fourier transform spectrometer. The Fabry-Perot interferometer creates an interference pattern from input light. An image of the interference pattern is captured by a detector (e.g., 340, 640), which is communicatively coupled to a processor (e.g., 342). The processor is configured to process the interference pattern image to determine information about the spectral content of the input light.
    • 公开了一种空间傅里叶变换光谱仪(例如,350)。 傅里叶变换光谱仪包括具有第一和第二光学表面(例如,454,458和554,558)的法布里 - 珀罗干涉仪(例如,320,420,520)。 第一和第二光学表面之间的间隙(例如,462,562)在与傅里叶变换光谱仪的光轴(例如,466,566,666)正交的方向上空间变化。 法布里 - 珀罗干涉仪从输入光线产生干涉图案。 干涉图案的图像由通信地耦合到处理器(例如,342)的检测器(例如,340,640)捕获。 处理器被配置为处理干涉图案图像以确定关于输入光的光谱内容的信息。
    • 10. 发明申请
    • GAS VISUALIZING METHODS AND SYSTEMS WITH BIREFRINGENT POLARIZATION INTERFEROMETER
    • 气体可视化方法和系统与双向偏振干涉仪
    • WO2016205565A1
    • 2016-12-22
    • PCT/US2016/037933
    • 2016-06-16
    • FLIR SYSTEMS ABFLIR SYSTEMS, INC.
    • SANDSTEN, JonasSJUNNEBO, Joakim
    • G01J3/453G01J3/28G01J9/02G01J3/02
    • G01J3/2823G01B9/02001G01B9/02041G01B9/02089G01J3/0208G01J3/4531G01J9/0215G01J2003/2826
    • Systems and methods disclosed herein provide for gas imaging. A gas imaging system comprises a lenslet array configured to receive thermal radiation from a scene and transmit a plurality of substantially identical sub-images of the thermal radiation; a birefringent polarization interferometer configured to generate an optical path difference for each ray of the plurality of sub-images based on a respective position of each ray entering the BPI, the optical path differences combining to form an interference fringe pattern; and an infrared focal plane array configured to capture a thermal image of the plurality of sub-images modulated by the interference fringe pattern due to the optical path differences through the BPI. The captured thermal image may represent a plurality of interferogram sample points of the thermal radiation from the scene, and may be used to construct a plurality of hyperspectral images of the thermal radiation from the scene.
    • 本文公开的系统和方法提供气体成像。 一种气体成像系统,包括配置成接收来自场景的热辐射并透射多个基本相同的所述热辐射的子图像的小透镜阵列; 双折射偏振干涉仪,其被配置为基于进入所述BPI的每个射线的相应位置产生所述多个子图像中的每个射线的光程差,所述光路差组合以形成干涉条纹图案; 以及红外焦平面阵列,被配置为捕获由于通过BPI的光路差异而被干涉条纹图案调制的多个子图像的热图像。 捕获的热图像可以表示来自场景的热辐射的多个干涉图样本点,并且可以用于构建来自场景的热辐射的多个高光谱图像。