会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • IMPROVED STRAIN SENSOR
    • 改进的应变传感器
    • WO2010151453A2
    • 2010-12-29
    • PCT/US2010038601
    • 2010-06-15
    • TSI TECHNOLOGIES LLCCLOTHIER BRIAN LSORKINE EVGENI
    • CLOTHIER BRIAN LSORKINE EVGENI
    • G01B7/16G01B7/24
    • G01B7/24
    • Improved microwire strain sensor elements (20, 40, 52, 62) and corresponding methods are provided, which permit accurate, wireless strain monitoring of a variety of structures, including composite structures, through use of a remote detector (28). The sensor elements (20, 40, 52, 62) have amorphous or nanocrystalline metallic alloy microwire cores (22, 48), which exhibit substantially reduced remagnetization responses when the sensor elements (20, 40, 52, 62) are coupled with a structure to be strain-monitored, and the structures are in an unstrained condition. When the monitored structure experiences a strain above a pre-selected threshold value, the microwire cores (22, 48) exhibit substantially different remagnetization responses as an indication that the monitored structure has experienced a strain above a strain threshold or over a range of strain. In use, the strain sensor elements (20, 40, 52, 62) are coupled with a structure to be monitored by application of the sensor elements (20, 40, 52, 62) to a surface of the structure, or by imbedding the sensor elements (20, 40, 52, 62) within the structure, and the coupled sensor elements are periodically interrogated by the detector (28). Preferably, the microwire cores (22, 48) are placed in compression in order to suppress the inherent remagnetization responses thereof by means of a surrounding body (26) or surrounding layers (44, 46) formed of synthetic resin material which shrinks upon curing. When the sensor elements (20, 40, 52, 62) are strained as a result of a strain experienced by the monitored structure, the remagnetization responses of the microwire cores (22, 48) are substantially increased.
    • 提供改进的微线应变传感器元件(20,40,52,62)和相应的方法,其允许通过使用远程检测器(28)对各种结构(包括复合结构)进行精确的无线应变监测。 传感器元件(20,40,52,62)具有无定形或纳米晶金属合金微线芯(22,48),当传感器元件(20,40,52,62)与结构 应变监测,结构处于无限制状态。 当被监测的结构经受超过预选阈值的应变时,微线芯(22,48)表现出显着不同的再磁化响应,作为被监测结构已经经受应变阈值以上或应变范围以上的应变的指示。 在使用中,应变传感器元件(20,40,52,62)通过将传感器元件(20,40,52,62)施加到结构的表面上而与要监控的结构相结合,或者通过将 结构内的传感器元件(20,40,52,62)和耦合的传感器元件由检测器(28)周期性询问。 优选地,微线芯(22,48)被置于压缩状态,以便通过由固化时收缩的合成树脂材料形成的周围的主体(26)或周围的层(44,46)来抑制其固有的再磁化响应。 当传感器元件(20,40,52,62)由于所监视的结构所经受的应变而变形时,微线芯(22,48)的再磁化响应显着增加。
    • 2. 发明申请
    • IMPROVED STRAIN SENSOR
    • 改进的应变传感器
    • WO2010151453A3
    • 2011-04-07
    • PCT/US2010038601
    • 2010-06-15
    • TSI TECHNOLOGIES LLCCLOTHIER BRIAN LSORKINE EVGENI
    • CLOTHIER BRIAN LSORKINE EVGENI
    • G01B7/16G01B7/24
    • G01B7/24
    • Improved microwire strain sensor elements (20, 40, 52, 62) and corresponding methods are provided, which permit accurate, wireless strain monitoring of a variety of structures, including composite structures, through use of a remote detector (28). The sensor elements (20, 40, 52, 62) have amorphous or nanocrystalline metallic alloy microwire cores (22, 48), which exhibit substantially reduced remagnetization responses when the sensor elements (20, 40, 52, 62) are coupled with a structure to be strain-monitored, and the structures are in an unstrained condition. When the monitored structure experiences a strain above a pre-selected threshold value, the microwire cores (22, 48) exhibit substantially different remagnetization responses as an indication that the monitored structure has experienced a strain above a strain threshold or over a range of strain. In use, the strain sensor elements (20, 40, 52, 62) are coupled with a structure to be monitored by application of the sensor elements (20, 40, 52, 62) to a surface of the structure, or by imbedding the sensor elements (20, 40, 52, 62) within the structure, and the coupled sensor elements are periodically interrogated by the detector (28). Preferably, the microwire cores (22, 48) are placed in compression in order to suppress the inherent remagnetization responses thereof by means of a surrounding body (26) or surrounding layers (44, 46) formed of synthetic resin material which shrinks upon curing. When the sensor elements (20, 40, 52, 62) are strained as a result of a strain experienced by the monitored structure, the remagnetization responses of the microwire cores (22, 48) are substantially increased.
    • 提供改进的微线应变传感器元件(20,40,52,62)和相应的方法,其允许通过使用远程检测器(28)对各种结构(包括复合结构)进行精确的无线应变监测。 传感器元件(20,40,52,62)具有无定形或纳米晶金属合金微线芯(22,48),当传感器元件(20,40,52,62)与结构 应变监测,结构处于无限制状态。 当被监测的结构经受超过预选阈值的应变时,微线芯(22,48)表现出显着不同的再磁化响应,作为被监测结构已经经受应变阈值以上或应变范围以上的应变的指示。 在使用中,应变传感器元件(20,40,52,62)通过将传感器元件(20,40,52,62)施加到结构的表面上而与要监控的结构相结合,或者通过将 结构内的传感器元件(20,40,52,62)和耦合的传感器元件由检测器(28)周期性询问。 优选地,微线芯(22,48)被置于压缩状态,以便通过由固化时收缩的合成树脂材料形成的周围的主体(26)或周围的层(44,46)来抑制其固有的再磁化响应。 当传感器元件(20,40,52,62)由于所监视的结构所经受的应变而变形时,微线芯(22,48)的再磁化响应显着增加。
    • 3. 发明申请
    • ONE-TIME SENSOR DEVICE
    • 一次传感器装置
    • WO2011019865A2
    • 2011-02-17
    • PCT/US2010045253
    • 2010-08-12
    • TSI TECHNOLOGIES LLCSORKINE EVGENICLOTHIER BRIAN L
    • SORKINE EVGENICLOTHIER BRIAN L
    • G01K7/36C22C45/04G01K1/14G01R33/00H01B7/00H01F1/12H01F1/153
    • G01R33/02C22C45/04G01K3/04G01K5/48G01K7/36H01F1/0308H01F1/15316H01F1/15333H01F1/15391
    • One-time, single-use sensor elements (22, 46) are provided for detecting the occurrence of predetermined conditions such as temperature and elapsed time- temperature. The sensor elements (22, 46) preferably comprise elongated, glass-coated, metal alloy, amorphous or nanocrystalline microwires (30, 48), which can be placed in a position to detect the predetermined condition of interest. An alternating magnetic field detector (28) may be used to continuously or periodically interrogate the sensor elements (22, 46) to determine if the predetermined condition has occurred. In one aspect of the invention, the microwires (30, 48) experience a change in configuration upon the occurrence of the predetermined condition, and have correspondingly different induced remagnetization responses. In another embodiment, a static microwire is provided having an initial bi-stable single domain; when a predetermined time-temperature condition is experienced, multiple domains are established in the microwire, and this can be detected by the detector (28).
    • 提供一次性的一次性传感器元件(22,46),用于检测诸如温度和经过的时间温度的预定条件的发生。 传感器元件(22,46)优选地包括细长的玻璃涂覆的金属合金,无定形或纳米晶体微线(30,48),其可被放置在检测预定感兴趣条件的位置。 可以使用交变磁场检测器(28)来连续或周期性地询问传感器元件(22,46)以确定是否已经发生了预定条件。 在本发明的一个方面,微线(30,48)在出现预定条件时经历配置变化,并具有相应不同的诱导再磁化响应。 在另一个实施例中,提供具有初始双稳态单域的静态微线; 当经历预定的时间温度条件时,在微线中建立多个域,并且这可以由检测器(28)检测。
    • 4. 发明申请
    • EDDY CURRENT THERMOMETER
    • EDDY电流温度计
    • WO2011049846A3
    • 2011-08-04
    • PCT/US2010053001
    • 2010-10-18
    • TSI TECHNOLOGIES LLCMALYSHEV VLADIMIRSORKINE EVGENI
    • MALYSHEV VLADIMIRSORKINE EVGENI
    • G01K7/36G01K13/10
    • G01K7/36G01K2207/02G01K2207/06G01R33/0283
    • A remote, noncontact temperature determination method and apparatus is provided, which is operable to determine the temperature of a conducting member forming a part of or in operative thermal communication with an object of interest. The method comprises the steps of first inducing a closed vortex eddy current (28) in a conducting member (16, 38, 44) by subjecting the member (16, 38, 44) to a magnetic field, such that the corresponding eddy current magnitude changes exponentially over time. A characteristic time constant of the exponential current magnitude changes is then determined, and this is used to calculate the temperature of the object. The apparatus (24) includes a field transmitting coil (14) coupled with a waveform generator (12) for inducing the eddy current (28), and a field receiving coil assembly (18) which detects the corresponding magnetic field induced by the eddy current (28). Using the invention, temperature determinations can be made which are substantially independent of the relative distance and/or angular orientation between the conducting member (16, 38, 44) and the field receiving coil assembly (18).
    • 提供远程非接触式温度测定方法和装置,其可操作以确定形成感兴趣对象的一部分或与之有效热连通的导电构件的温度。 该方法包括以下步骤:首先通过对构件(16,38,44)施加磁场来引起导电构件(16,38,44)中的闭合涡流涡流(28),使得相应的涡流大小 随时间呈指数变化。 然后确定指数电流幅度变化的特征时间常数,并且这用于计算物体的温度。 装置(24)包括与用于感应涡流(28)的波形发生器(12)耦合的场发射线圈(14),以及一个场接收线圈组件(18),其检测由涡流引起的相应磁场 (28)。 使用本发明,可以进行基本上与导电构件(16,38,44)和场接收线圈组件(18)之间的相对距离和/或角度取向无关的温度测定。