会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • ELLIPSOIDAL MICROCAVITY PLASMA DEVICES AND POWDER BLASTING FORMATION
    • ELLIPSOIDAL微波等离子体装置和粉末喷砂形成
    • WO2010044992A1
    • 2010-04-22
    • PCT/US2009/057961
    • 2009-09-23
    • THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOISEDEN, J., GaryPARK, Sung-JinSUNG, Seung, Hoon
    • EDEN, J., GaryPARK, Sung-JinSUNG, Seung, Hoon
    • H01J17/04
    • H01J65/046H01J9/241H01J11/18
    • Microcavity plasma devices and arrays are formed in layers that also seal the plasma medium, i e, gas(es) and/or vapors A microcavity plasma device includes first and second thin layers that are joined together A half ellipsoid microcavity or plurality of half ellipsoid microcavities is defined in one or both of the first and second thin layers, and electrodes are arranged with respect to the microcavity to excite a plasma within said microcavities upon application of a predetermined voltage to the electrodes A method for forming a microcavity plasma is also provided by a preferred embodiment The method includes defining a pattern of protective polymer on the first thin layer Powder blasting forms half ellipsoid microcavities in the first thin layer The second thin layer is joined to the first layer The patterning can be conducted lithographically or can be conduced with a simple screen
    • 微腔等离子体装置和阵列形成为也密封等离子体介质即气体和/或蒸汽的层。微腔等离子体装置包括连接在一起的第一和第二薄层半椭圆微腔或多个半椭圆微腔 被限定在第一和第二薄层中的一个或两个中,并且相对于微腔布置电极,以便在向电极施加预定电压时在所述微腔内激发等离子体。用于形成微腔等离子体的方法也由 优选的实施方案该方法包括在第一薄层上限定保护性聚合物的图案粉末喷射形成第一薄层中的半椭圆形微腔第二薄层连接到第一层。图案化可以光刻地进行,或者可以用 简单的屏幕
    • 3. 发明申请
    • MICROCAVITY PLASMA DEVICES WITH NON-UNIFORM CROSS-SECTION MICROCAVITIES
    • 具有非均匀性交叉显微镜的MICROCAVITY等离子体装置
    • WO2009055765A2
    • 2009-04-30
    • PCT/US2008/081272
    • 2008-10-27
    • THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOISEDEN, J., GaryPARK, Sung-JinSOO, KwangPRICE, Andrew, J.
    • EDEN, J., GaryPARK, Sung-JinSOO, KwangPRICE, Andrew, J.
    • H01L29/02
    • H01J11/18C25D11/12C25D11/26H01J9/241H01J61/82
    • An embodiment of the invention is an array of microcavity plasma devices having microcavities of non-uniform cross-section. The array includes a first electrode that is a thin metal foil or film including a plurality of non-uniform cross-section microcavities therein that are encapsulated in oxide. The invention provides for a continuous range of microcavity wall profiles to be fabricated, ranging from a linear taper to parabolic (bowl-shaped) cavities. A second electrode is a thin metal foil encapsulated in oxide that is bonded to the first electrode, the oxide preventing contact between the first and second electrodes. A packaging layer contains gas or vapor in the non-uniform cross- section microcavities. A method for forming an array of microcavity plasma devices begins with pre-anodizing a metal foil or thin film. Photoresist is patterned onto the anodized metal foil or film to encapsulate the anodized foil or film except on a top surface at desired positions of microcavities. A second anodization or electrochemical etching is conducted to form the non-uniform cross-section sidewall microcavities cavities. After removing photoresist and metal oxide, a final anodization lines the walls of the microcavities with metal oxide and fully encapsulates the metal electrodes with metal oxide.
    • 本发明的实施例是具有不均匀横截面的微腔的微腔等离子体装置的阵列。 该阵列包括第一电极,该第一电极是薄的金属箔或膜,其中包含多个非均匀的横截面微腔,其被封装在氧化物中。 本发明提供了要制造的连续范围的微腔壁轮廓,范围从线性锥形到抛物线(碗形)腔。 第二电极是封装在氧化物中的薄金属箔,其结合到第一电极,防止第一和第二电极之间的氧化物接触。 包装层在不均匀的横截面微腔中包含气体或蒸汽。 用于形成微腔等离子体装置的阵列的方法开始于金属箔或薄膜的预阳极氧化。 将光致抗蚀剂图案化到阳极氧化的金属箔或膜上以将阳极化箔或膜除外在微腔的所需位置处除了顶表面。 进行第二阳极氧化或电化学蚀刻以形成不均匀的横截面侧壁微腔。 在去除光致抗蚀剂和金属氧化物之后,用金属氧化物最终的阳极氧化将微腔的壁线引导,并用金属氧化物完全封装金属电极。
    • 5. 发明申请
    • ARRAYS OF MICROCAVITY PLASMA DEVICES AND ELECTRODES WITH REDUCED MECHANICAL STRESS
    • 具有降低机械应力的微波等离子体装置和电极阵列
    • WO2008153663A1
    • 2008-12-18
    • PCT/US2008/006226
    • 2008-05-15
    • THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOISEDEN, J., GaryPARK, Sung-Jin
    • EDEN, J., GaryPARK, Sung-Jin
    • H01J17/49
    • H01J11/18C25D11/26
    • An array of microcavity plasma devices include a plurality of thin metal first electrodes and stress reduction structures and/or geometries designed to promote the flatness during and after processing. The first electrodes are buried in a thin metal oxide layer which protects the electrodes from the plasma in the microcavities. In embodiments of the invention, some or all of the electrodes are connected. Patterns of connections in a one- or two- dimensional array of microcavities can be defined. The first electrodes comprise circumferential electrodes that surround individual microcavities. A second thin layer having a buried, second electrode is bonded to the first thin layer. A packaging layer seals the discharge medium into the microcavities. In a preferred methods of formation of arrays of microcavity plasma devices or electrodes, a thin metal foil or film is symmetrically anodized and formed with a stress reduction geometry and/or structures.
    • 微腔等离子体装置的阵列包括多个薄金属第一电极和设计成在加工期间和之后促进平坦度的应力减小结构和/或几何形状。 第一电极被埋在薄的金属氧化物层中,其在微腔中保护电极免受等离子体的影响。 在本发明的实施例中,部分或全部电极被连接。 可以定义一维或二维微腔阵列中的连接模式。 第一电极包括围绕各个微腔的圆周电极。 具有埋置的第二电极的第二薄层被结合到第一薄层。 包装层将排放介质密封到微腔中。 在形成微腔等离子体器件或电极的阵列的优选方法中,薄金属箔或膜对称地阳极氧化并且具有应力减小几何形状和/或结构。
    • 8. 发明申请
    • MICRODISCHARGE DEVICES WITH ENCAPSULATED ELECTRODES AND METHOD OF MAKING
    • 具有封装电极的微型扩大器装置和制造方法
    • WO2007011388A2
    • 2007-01-25
    • PCT/US2005/035782
    • 2005-10-04
    • THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOISEDEN, J., GaryPARK, Sung-Jin
    • EDEN, J., GaryPARK, Sung-Jin
    • H01J61/04H01J17/04
    • H01J17/04H01J9/02
    • An embodiment of the invention is a microdischarge device including a first electrode (230) encapsulated in a dielectric, which may be a nanoporous dielectric film. A second electrode (240) is provided which may also be encapsulated with a dielectric. The electrodes are configured to ignite a discharge in a microcavity when a time-varying (an AC, RF, bipolar or a pulsed DC, etc.) potential is applied between the electrodes. In specific embodiments of the invention, the second electrode may be a screen covering the microcavity opening and the microcavity may be closed at one end. In some embodiments of the invention, the second electrode may be in direct contact with the first electrode. In other embodiments, a gap separates the electrodes. In a preferred method of manufacturing microdischarge devices with encapsulated electrodes, a metal substrate is used to form a nanoporous dielectric encapsulated electrode and dissolve a portion of the dielectric layer. The dielectric layer is then anodized a second time, resulting in a nanoporous dielectric encapsulated electrode with improved regularity of the nanoscale dielectric structures. In some embodiments of the invention, the columnar voids in the dielectric may be backfilled with one or more materials to further tailor the properties of the dielectric.
    • 本发明的一个实施例是一种微放电装置,其包括封装在电介质中的第一电极(230),所述电介质可以是纳米多孔介电膜。 提供第二电极(240),其也可以用电介质封装。 当在电极之间施加时变(AC,RF,双极或脉冲DC等)电势时,电极被配置为点燃微腔中的放电。 在本发明的具体实施例中,第二电极可以是覆盖微腔开口的屏幕,并且微腔可以在一端封闭。 在本发明的一些实施例中,第二电极可以与第一电极直接接触。 在其他实施例中,间隙将电极分开。 在制造具有封装电极的微放电器件的优选方法中,使用金属衬底来形成纳米多孔介电封装电极并溶解部分介电层。 然后第二次阳极氧化电介质层,产生具有改进的纳米级电介质结构规则性的纳米多孔介电包封电极。 在本发明的一些实施例中,电介质中的柱状空隙可以用一种或多种材料回填以进一步调整电介质的性质。
    • 9. 发明申请
    • PLASMA EXTRACTION MICROCAVITY PLASMA DEVIVE AND METHOD
    • 等离子体萃取微波等离子体蒸馏和方法
    • WO2007091993A2
    • 2007-08-16
    • PCT/US2006/003289
    • 2006-01-31
    • THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOISEDEN, J., GaryPARK, Sung-Jin
    • EDEN, J., GaryPARK, Sung-Jin
    • G01N21/73G01N21/6404H05H1/2406H05H2001/2412
    • A preferred embodiment plasma extraction microcavity plasma device generates a spatially-confined plasma in a gas or vapor, or gas and vapor mixture, including, for example, atmospheric pressure air. A microcavity plasma device is excited by a potential applied between excitation electrodes (16, 18, 42) of the microcavity plasma device, and a probe electrode (20) proximate the microcavity is maintained at the potential of one of the electrodes, extracts plasma from the microcavity plasma device. In preferred embodiments, the excitation electrodes of the microcavity plasma device are isolated from the plasma by dielectric (22, 24, 26), and time-varying (AC, RF, bipolar or pulsed DC, etc.) potential excites a plasma that is then extracted by the probe electrode. In alternate embodiments, the microcavity plasma device has an excitation electrode that contacts the plasma. A DC potential excites a plasma that is then extracted by the probe electrode.
    • 优选的实施方案等离子体提取微腔等离子体装置在气体或蒸汽或气体和蒸汽混合物中产生空间有限的等离子体,包括例如大气压的空气。 微腔等离子体装置被施加在微腔等离子体装置的激发电极(16,18,42)之间的电位激发,并且靠近微腔的探针电极(20)保持在一个电极的电位上,从 微腔等离子体装置。 在优选实施例中,微腔等离子体装置的激发电极通过电介质(22,24,26)与等离子体隔离,时变(AC,RF,双极或脉冲DC等)电位激发等离子体 然后由探针电极提取。 在替代实施例中,微腔等离子体装置具有接触等离子体的激发电极。 DC电位激发等离子体,然后由探针电极提取。