会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • ENTERPRISE INFORMATION FUSION
    • 企业信息融合
    • WO2012172561A1
    • 2012-12-20
    • PCT/IN2012/000118
    • 2012-02-20
    • TATA CONSULTANCY SERVICES LIMITEDSHROFF, GautamAGARWAL, PuneetDEY, Lipika
    • SHROFF, GautamAGARWAL, PuneetDEY, Lipika
    • G06Q10/06
    • G06Q10/06
    • Systems and methods related to enterprise information fusion are described. The method comprises obtaining event information corresponding to at least one event, wherein the at least one event includes at least one of an incident and a customer feedback. Based on the event information, information corresponding to at least one entity associated with at least one operation of an enterprise is retrieved, from a plurality of entity information sources. An impact of the at least one event on the at least one entity is determined. Based on the determination of the impact, a risk associated with the at least one event on the at least one operation of the enterprise is evaluated. An alert is generated, based on the evaluation, where the alert is indicative of the risk.
    • 描述与企业信息融合相关的系统和方法。 所述方法包括获得与至少一个事件相对应的事件信息,其中所述至少一个事件包括事件和客户反馈中的至少一个。 基于事件信息,从多个实体信息源检索与至少一个与企业的至少一个操作相关联的实体对应的信息。 确定至少一个事件对至少一个实体的影响。 基于影响的确定,评估与企业的至少一个操作中的至少一个事件相关联的风险。 根据评估产生警报,其中警报指示风险。
    • 4. 发明申请
    • SYSTEM AND METHOD FOR PREDICTING REPEAT BEHAVIOR OF CUSTOMERS
    • 系统和方法预测客户的重复行为
    • WO2018069817A1
    • 2018-04-19
    • PCT/IB2017/056227
    • 2017-10-09
    • TATA CONSULTANCY SERVICES LIMITED
    • AGARWAL, PuneetKAZMI, Auon HaidarSHROFF, Gautam
    • G06E1/00
    • System and method for predicting repeat behaviour of customers are disclosed. In an embodiment, the method includes abstracting a customer interaction data associated with interactions of the customer with respect a target entity into a common data format (CDF) to obtain an abstracted customer interaction data. Based on at least a portion of the abstracted customer interaction data, a set of features corresponding to the target entity are extracted. The set of features characterizes customer interaction with respect to the target entity. Based on the set of features, a prediction model is predicted to predict repeat behaviour probability of the customer with respect to the target entity.
    • 公开了用于预测顾客的重复行为的系统和方法。 在一个实施例中,该方法包括将与客户关于目标实体的交互相关联的客户交互数据提取为公共数据格式(CDF)以获得抽象的客户交互数据。 基于抽象的客户交互数据的至少一部分,提取对应于目标实体的一组特征。 这组功能描述了客户与目标实体之间的交互。 基于这组特征,预测预测模型以预测客户相对于目标实体的重复行为概率。
    • 7. 发明申请
    • HEALTH MONITORING AND PROGNOSTICS OF A SYSTEM
    • 一个系统的健康监测和预测
    • WO2017216647A1
    • 2017-12-21
    • PCT/IB2017/051621
    • 2017-03-21
    • TATA CONSULTANCY SERVICES LIMITED
    • MALHOTRA, PankajTV, VishnuRAMAKRISHNAN, AnushaANAND, GaurangiVIG, LovekeshAGARWAL, PuneetSHROFF, Gautam
    • G06F17/15
    • G06K9/6247G05B23/0243G06K9/00523G06K9/00563
    • The present disclosure relates to sequence to sequence mapper based systems and methods for health monitoring and prognostics of a system via a health index (HI). The sequence to sequence mapper learns to reconstruct normal time series behavior, and thereafter uses reconstruction error to estimate the HI. The HI is used for generating health behavior trend, detection of anomalous behavior, and remaining useful life (RUL) pertaining to a monitored system. The present disclosure does not rely on domain knowledge, as in the prior art, when estimating the health index. The HI of the monitored system can be determined irrespective of the predictability of the time series data generated from the monitored system. Likewise, the present disclosure is relevant to time series data of varying nature: predictable, unpredictable, periodic, aperiodic, and quasi-periodic time series; short time series and long time series; and univariate and multivariate time series.
    • 本公开涉及用于经由健康指数(HI)对系统进行健康监测和预测的基于序列映射器的系统和方法。 序列映射器学习重构正常的时间序列行为,然后使用重构误差来估计HI。 HI用于产生健康行为趋势,检测异常行为和与监测系统有关的剩余使用寿命(RUL)。 当在估计健康指数时,本公开不像在现有技术中那样依赖于领域知识。 无论监测系统产生的时间序列数据的可预测性如何,都可以确定被监测系统的HI。 同样地,本公开涉及具有不同性质的时间序列数据:可预测的,不可预知的,周期性的,非周期性的和准周期性的时间序列; 短时间序列和长时间序列; 和单变量和多变量时间序列。