会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • HIGH COMPRESSION RATIO, HYDROGEN ENHANCED GASOLINE ENGINE SYSTEM
    • 高压缩比,加氢汽油发动机系统
    • WO2003042521A2
    • 2003-05-22
    • PCT/US2002/035623
    • 2002-11-06
    • MASSACHUSETTS INSTITUTE OF TECHNOLOGYCOHN, Daniel, R.BROMBERG, LeslieRABINOVICH, AlexanderHEYWOOD, John, B.
    • COHN, Daniel, R.BROMBERG, LeslieRABINOVICH, AlexanderHEYWOOD, John, B.
    • F02D
    • F02D41/005F02B1/12F02B43/10F02B47/04F02B51/00F02D19/0644F02D19/0671F02D19/081F02D35/027F02D41/0025F02D41/0027F02D41/3023F02D2250/36F02M25/10F02M26/13Y02T10/32Y02T10/36Y02T10/47Y10S123/12
    • A hydrogen enhanced gasoline engine system using high compression ratio is optimized to minimize NOx emissions, exhaust aftertreatment catalyst requirements, hydrogen requirements, engine efficiency and cost. In one mode of operation the engine is operated very lean (equivalence ratio O = 0.4 to 0.7) at lower levels of power. Very lean operation reduces NOx to very low levels. A control system is used to increase equivalence ratio at increased torque or power requirements while avoiding the knock that would be produced by high compression ratio operation. The increased equivalence ratio reduces the amount of hydrogen required to extend the lean limit in order to avoid misfire and increases torque and power. Reduced hydrogen requirements at high power can significantly reduce the cost and size of onboard hydrogen generator technology. Increased in-cylinder turbulence and stratified hydrogen injection can be used to minimize hydrogen requirements for operation at a given equivalence ratio value. In another embodiment, vehicle NOx emissions can be suppressed to low levels and knock can be prevented by use of hydrogen enhanced exhaust gas recirculation (EGR) at all power levels with stoichiometric operation and a 3-way exhaust aftertreatment catalyst. Alternatively, EGR can be used with lean operation to keep NOx at low levels while the equivalence ratio is increased to provide higher torque and power capability. The effect of reduced peak power due to charge dilution to avoid knock can be minimized by boosting, using turbocharging or supercharging.
    • 优化了使用高压缩比的氢气增强型汽油机系统,以最大限度地减少NOx排放,废气后处理催化剂要求,氢气需求,发动机效率和成本。 在一种操作模式中,发动机在较低功率水平下运行非常稀薄(当量比O = 0.4至0.7)。 非常精益操作将NOx降低到非常低的水平。 控制系统用于在增加转矩或功率要求的同时提高当量比,同时避免由高压缩比操作产生的爆震。 增加的当量比减少了扩大稀薄极限所需的氢气量,以避免失火并增加扭矩和功率。 在大功率下降低氢气需求可显着降低机载氢发生器技术的成本和尺寸。 可以使用增加的缸内湍流和分层氢气喷射来最小化在给定的当量比值下操作的氢气需求。 在另一个实施方案中,车辆NOx排放可以被抑制到低水平,并且可以通过使用具有化学计量操作的所有功率水平的氢增强废气再循环(EGR)和三向排气后处理催化剂来防止爆震。 或者,EGR可以用于稀薄运行,以将NOx保持在低水平,同时增加当量比以提供更高的扭矩和功率能力。 通过使用涡轮增压或增压来升压,可以将由于充电稀释而引起的峰值功率降低以避免爆震的效果最小化。
    • 10. 发明申请
    • COMPACT HIGH PERFORMANCE CHEMICAL DETECTOR
    • 紧凑的高性能化学检测器
    • WO2008036439A2
    • 2008-03-27
    • PCT/US2007/068720
    • 2007-05-11
    • MASSACHUSETTS INSTITUTE OF TECHNOLOGYBROMBERG, LeslieCOHN, Daniel, R.
    • BROMBERG, LeslieCOHN, Daniel, R.
    • B01D59/44
    • G01N27/624
    • Ion mobility spectrometer. The spectrometer includes an enclosed region having a gas with a selected chemical species contained therein. An energy source ionizes the gas and the chemical species. Spaced apart electrodes generate high frequency and DC electric fields across the enclosed region and circuitry is provided for generating voltage waveforms on the electrodes. The voltage waveforms include a symmetric RF field to minimize ion loss and to prevent clustering of the ions with water molecules during an ion buildup phase. A DC and asymmetric, non-uniform RF field is provided to separate and focus the ions in the region during an ion separation phase. Finally, a changing DC or RF field causes the ionized chemical species to move to the electrodes and read-out circuitry responds to current in the electrodes to indicate the presence and/or amount of the chemical species.
    • 离子迁移谱仪。 光谱仪包括具有包含其中选择的化学物质的气体的封闭区域。 能量源使气体和化学物质离子化。 隔开的电极在封闭区域产生高频和直流电场,并且提供用于在电极上产生电压波形的电路。 电压波形包括对称RF场,以最小化离子损失,并防止在离子累积阶段期间离子与水分子的聚集。 提供DC和非对称的不均匀RF场以在离子分离阶段期间分离和聚焦该区域中的离子。 最后,变化的DC或RF场导致电离化学物质移动到电极,并且读出电路对电极中的电流进行响应以指示化学物质的存在和/或量。