会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • MR IMAGING USING SHARED INFORMATION AMONG IMAGES WITH DIFFERENT CONTRAST
    • 在具有不同对比度的图像中使用共享信息的成像
    • WO2013057629A2
    • 2013-04-25
    • PCT/IB2012/055471
    • 2012-10-10
    • KONINKLIJKE PHILIPS ELECTRONICS N.V.
    • HUANG, FengDUENSING, George RandallLIN, Wei
    • G01R33/54G01R33/565
    • G01R33/56G01R33/243G01R33/246G01R33/543G01R33/5611G01R33/565G01R33/56509
    • A typical clinical MR protocol is composed of several sets of scans to acquired images with different contrast, such as T1, T2 and DWI. Currently, the acquisition and reconstruction of these images are processed individually. The proposed method treats the optimization of all acquisitions and reconstructions as one single procedure for faster and more robust MRI. The theory behind this concept is that the information such as B 0 , B 1 - field, optimized acquisition trajectory, reconstruction parameters, etc., can be shared among all scans for different contrasts since the same subject is scanned in the same system using the same RF coil. A method of magnetic resonance imaging includes performing a first magnetic 10 resonance scan sequence which saves a data store, and performing a second magnetic resonance scan sequence which uses a data store from the first magnetic resonance scan sequence. A magnet (10) generates a B 0 field in an examination region (12), a gradient coil system (14, 22) creates magnetic gradients in the examination region, and an RF system (16, 18, 20) induces resonance in and receives resonance signals from a subject in the 1 examination region. One or more processors (30) are programmed to perform a magnetic resonance pre-scan sequence to generate pre-scan information, perform a first sequence to generate first sequence data, refine the pre-scan information with the first sequence data, perform a second imaging sequence to generate second sequence data. Further, the second sequence data is either reconstructed using the refined pre-scan information or performed using the refined pre-scan sequence information.
    • 典型的临床MR协议由几组扫描组成,具有不同对比度的采集图像,如T1,T2和DWI。 目前,这些图像的采集和重建是单独处理的。 所提出的方法将所有采集和重建的优化作为一个单一的程序,用于更快更健壮的MRI。 这个概念背后的理论是,在不同对比度的所有扫描之间可以共享诸如B0,B1-场,优化采集轨迹,重构参数等信息,因为在同一系统中使用相同的RF 线圈。 磁共振成像的方法包括执行保存数据存储的第一磁共振扫描序列,以及执行使用来自第一磁共振扫描序列的数据存储的第二磁共振扫描序列。 磁体(10)在检查区域(12)中产生B0场,梯度线圈系统(14,22)在检查区域中产生磁梯度,RF系统(16,18,20)引起共振并接收 来自1个检查区域的受试者的共振信号。 一个或多个处理器(30)被编程为执行磁共振预扫描序列以产生预扫描信息,执行第一序列以产生第一序列数据,用第一序列数据细化预扫描信息,执行第二序列数据 成像序列以产生第二序列数据。 此外,使用精细的预扫描信息来重构第二序列数据或者使用精细的预扫描序列信息来执行。
    • 2. 发明申请
    • WIRELESS PROSPECTIVE MOTION MARKER
    • 无线前景运动标记
    • WO2012160486A2
    • 2012-11-29
    • PCT/IB2012/052460
    • 2012-05-16
    • KONINKLIJKE PHILIPS ELECTRONICS N.V.LIN, WeiSAYLOR, Charles AlbertREYKOWSKI, Charles
    • LIN, WeiSAYLOR, Charles AlbertREYKOWSKI, Charles
    • A61B5/055
    • G01R33/56509A61B5/055A61B5/1127A61B2017/00694A61B2090/3954G01R33/58
    • A magnetic resonance system includes a magnetic resonance scanner (8) and a magnetic resonance scan controller (24). A plurality of markers (40, 140) are attached to the subject to monitor motion of a portion of a subject within an examination region. A motion control unit receives motion data from the markers indicative of the motion and controls the magnetic scan controller to adjust scan parameters to compensate for the motion. In one embodiment, the marker (40) includes a substance (44) which resonates at a characteristic frequency in response to radio excitations by the magnetic resonance scanner. A controller (52) switches an inductive circuit (48, 50) disposed adjacent the substance between a tuned state and a detuned state. In another embodiment, the motion sensor includes an accelerometer, a gyroscope, a motion sensor, or a Hall-effect element, and a controller (144) which gathers motion data generated by the element and provides temporary storage for the motion data. A communication unit (146, 148, 150) transmits the motion data wirelessly.
    • 磁共振系统包括磁共振扫描器(8)和磁共振扫描控制器(24)。 多个标记(40,140)附接到对象以监视检查区域内的被摄体的一部分的运动。 运动控制单元从指示运动的标记接收运动数据,并控制磁扫描控制器以调整扫描参数以补偿运动。 在一个实施例中,标记(40)包括响应于磁共振扫描器的无线电激励以特征频率谐振的物质(44)。 控制器(52)在调谐状态和失谐状态之间切换与物质相邻设置的感应电路(48,50)。 在另一个实施例中,运动传感器包括加速度计,陀螺仪,运动传感器或霍尔效应元件,以及收集由元件生成的运动数据并为运动数据提供临时存储的控制器(144)。 通信单元(146,148,150)以无线方式发送运动数据。
    • 3. 发明申请
    • RAPID PARALLEL RECONSTRUCTION FOR ARBITRARY K-SPACE TRAJECTORIES
    • 用于仲裁K-SPACE TRAJECTORIES的RAPID并行重建
    • WO2012085810A2
    • 2012-06-28
    • PCT/IB2011/055765
    • 2011-12-19
    • KONINKLIJKE PHILIPS ELECTRONICS N.V.LIN, WeiHUANG, FengFUDERER, Miha
    • LIN, WeiHUANG, FengFUDERER, Miha
    • G01R33/561
    • G06T11/005G01R33/4824G01R33/5611
    • An imaging method comprises acquiring an undersampled magnetic resonance partially parallel imaging (MR-PPI) dataset using a plurality of radio frequency receive coils and reconstructing the undersampled MR-PPI dataset to generate a reconstructed magnetic resonance (MR) image. The reconstructing includes: (i) using a generalized auto-calibrating partially parallel acquisition (GRAPPA) operator or direct convolution to fill in at least some missing data of the undersampled MR-PPI dataset so as to generate an enhanced dataset; and (ii) using an algorithm other than a GRAPPA operator and other than direct convolution to reconstruct the enhanced dataset or to reconstruct the undersampled MR-PPI dataset using the enhanced dataset as an initialization dataset for an iterative reconstruction algorithm. In some embodiments the MR-PPI dataset is a non-Cartesian dataset and a GRAPPA operator for wider radial bands (GROWL) is used in the operation (i).
    • 一种成像方法包括使用多个射频接收线圈获取欠采样的磁共振部分并行成像(MR-PPI)数据集,并重建欠采样MR-PPI数据集以产生重建磁共振(MR)图像。 重构包括:(i)使用广义自动校准部分并行获取(GRAPPA)算子或直接卷积来填补欠采样的MR-PPI数据集的至少一些丢失数据,以生成增强数据集; 和(ii)使用除GRAPPA算子之外的算法,而不是使用直接卷积来重建增强数据集,或者使用增强型数据集作为迭代重建算法的初始化数据集重构欠采样的MR-PPI数据集。 在一些实施例中,MR-PPI数据集是非笛卡尔数据集,并且在操作(i)中使用用于较宽辐射带的GRAPPA算子(GROWL)。
    • 4. 发明申请
    • A MRI METHOD OF FASTER CHANNEL - BY - CHANNEL RECONSTRUCTION WITHOUT IMAGE DEGRADATION
    • 不通过图像降解的频率更快的频道重建的MRI方法
    • WO2012123921A1
    • 2012-09-20
    • PCT/IB2012/051265
    • 2012-03-16
    • KONINKLIJKE PHILIPS ELECTRONICS N.V.HUANG, FengLIN, Wei
    • HUANG, FengLIN, Wei
    • G01R33/561G01R33/565
    • G01R33/56G01R33/34G01R33/5611G01R33/5612G01R33/56509
    • A plurality of coil elements (18, 18') and corresponding receivers (26) define a plurality of channels, each carrying a corresponding partial k-space data set (60, 64). One or more processors (30) generate (80) a first image representation (76) based on the plurality of partial k-space data sets, generate a relative sensitivity map (82) for each of the channels, project (90) the first image representation (76) with each of the relative sensitivity maps (82) to generate a plurality of recreated k-space data sets (92), and each partial k-space data and the corresponding recreated k-space data set are combined to generate substituted k-space data sets (96). The substituted k-space data sets are reconstructed (100) into a plurality of images (102) which are combined (104) to create a final image (106).
    • 多个线圈元件(18,18')和相应的接收器(26)限定多个通道,每个通道承载相应的部分k空间数据组(60,64)。 一个或多个处理器(30)基于多个部分k空间数据集生成(80)第一图像表示(76),为每个通道生成相对灵敏度图(82),项目(90)第一 图像表示(76),其中每个相对灵敏度图(82)生成多个重新创建的k空间数据集(92),并且将每个部分k空间数据和相应的重新创建的k空间数据组合以产生 取代k空间数据集(96)。 替换的k空间数据集被重建(100)成多个图像(102),它们被组合(104)以产生最终图像(106)。
    • 6. 发明申请
    • PARALLEL MRI METHOD USING CALIBRATION SCAN, COIL SENSITIVITY MAPS AND NAVIGATORS FOR RIGID MOTION COMPENSATION
    • 并行MRI方法使用校准扫描,线圈灵敏度和导航器进行刚性运动补偿
    • WO2012085796A1
    • 2012-06-28
    • PCT/IB2011/055738
    • 2011-12-16
    • KONINKLIJKE PHILIPS ELECTRONICS N.V.HUANG, FengLIN, Wei
    • HUANG, FengLIN, Wei
    • G01R33/561G01R33/567G01R33/565G01R33/563
    • G01R33/56509G01R33/5611G01R33/56325G01R33/5676G01R33/58
    • Magnetic resonance (MR) calibration data are acquired using a plurality of radio frequency receive coils, and both coil sensitivity maps and reference projection vectors are generated based on the MR calibration data. During imaging, extra navigator projection vectors are acquired, or part of the imaging data can be used as navigator projection vectors. Partially parallel imaging (PPI) can performed to enhance the navigation information. The navigator projection vectors and the reference projection vectors are sensitivity weighted using the coil sensitivity maps to generate navigator sensitivity weighted projection vectors (navigator SWPV) and reference sensitivity weighted projection vectors (reference SWPV) respectively, and these are compared to generate subject position information. The subject motions are compensated prospectively or retrospectively using the generated subject position information. The motion compensation may be prospective, performed by adjusting an imaging volume of the PPI based on the subject position information.
    • 使用多个射频接收线圈获取磁共振(MR)校准数据,并且基于MR校准数据生成线圈灵敏度图和参考投影矢量。 在成像期间,获取额外的导航器投影向量,或者可以将部分成像数据用作导航器投影矢量。 可以执行部分​​并行成像(PPI)来增强导航信息。 导航仪投影矢量和参考投影矢量使用线圈灵敏度图灵敏度加权,分别产生导航灵敏度加权投影矢量(导航器SWPV)和参考灵敏度加权投影矢量(参考SWPV),并将它们进行比较以产生主体位置信息。 使用生成的被摄体位置信息对被摄体进行前瞻性地或追溯地补偿。 可以通过基于对象位置信息调整PPI的成像体积来进行运动补偿。