会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 10. 发明申请
    • METHOD AND DEVICE FOR RAPIDLY ACQUIRING AND RECONSTRUCTING A SEQUENCE OF MAGNETIC RESONANCE IMAGES COVERING A VOLUME
    • WO2021239217A1
    • 2021-12-02
    • PCT/EP2020/064580
    • 2020-05-26
    • MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E. V.
    • FRAHM, JensVOIT, Dirk
    • G01R33/48G01R33/483G01R33/561
    • A method for creating, in particular acquiring and reconstructing, a sequence of magnetic resonance (MR) images of an object (1), said sequence of MR images representing a series of cross-sectional slices (2) of the object (1), comprises (a) providing a series of sets of image raw data including an image content of the MR images to be reconstructed, said image raw data being collected with at least one radiofrequency receiver coil of a magnetic resonance imaging (MRI) device, wherein each set of image raw data includes a plurality of data samples being generated in an imaging plane with a gradient-echo sequence that spatially encodes an MRI signal received with the at least one radiofrequency receiver coil using a non-Cartesian k-space trajectory, each set of image raw data comprises a set of homogeneously distributed lines in k-space with equivalent spatial frequency content, the lines of each set of image raw data cross the center of k-space and cover a continuous range of spatial frequencies, the positions of the lines of each set of image raw data differ in successive sets of image raw data, and the number of lines of each set of image raw data is selected such that each set of image raw data is undersampled below a sampling rate limit defined by the Nyquist-Shannon sampling theorem, and (b) subjecting the sets of image raw data to a regularized nonlinear inverse reconstruction process to provide the sequence of MR images, wherein each of the MR images is created by a simultaneous estimation of a sensitivity of the at least one receiver coil and the image content and in dependency on a difference between a current estimation of the sensitivity of the at least one receiver coil and the image content and a preceding estimation of the sensitivity of the at least one receiver coil and the image content, wherein said cross-sectional slices (2) of the object (1) are contiguous cross-sectional slices (2) with a predetermined slice thickness, each set of said image raw data represents one of said contiguous cross-sectional slices (2), and the position of each cross-sectional slice is shifted by a slice shift Δ perpendicular to the imaging plane in order to cover a volume of the object (1).