会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • CLOUD-AUTHENTICATED SITE RESOURCE MANAGEMENT DEVICES, APPARATUSES, METHODS AND SYSTEMS
    • 云认证站点资源管理设备,装置,方法和系统
    • WO2015048811A2
    • 2015-04-02
    • PCT/US2014/058480
    • 2014-09-30
    • SCHNEIDER ELECTRIC INDUSTRIES SAS
    • LEBLOND, SimonCARON, Simon
    • G06Q50/16H04L9/12
    • H04L63/08G05B15/02G06Q10/06G06Q50/163H04L9/32H04L12/2816H04L45/14
    • The Cloud-authenticated site resource management devices, apparatuses, methods and systems ("CASRM") transforms resource-use, weather, and user settings inputs into resource management schedule and control outputs. The CASRM achieves data transformation via using a building automation management device, comprising at least a processor a memory storing processor-executable instructions to receive, at a virtual cloud network controller, a data packet from a source building resource control device and to access a virtual routing table corresponding to a local virtual network associated with a control entity. The building automation management device may also determine a destination building resource control device based on the virtual routing table and at least one destination address in the data packet, and may send the data packet to the destination building resource control device.
    • 云认证站点资源管理设备,装置,方法和系统(“CASRM”)将资源使用,天气和用户设置输入转换为资源管理调度和控制输出。 CASRM通过使用建筑物自动化管理装置实现数据转换,该建筑物自动化管理装置至少包括处理器,存储器存储处理器可执行指令以在虚拟云网络控制器处接收来自源建筑物资源控制装置的数据分组并且访问虚拟 路由表对应于与控制实体相关联的本地虚拟网络。 建筑物自动化管理设备还可以基于虚拟路由表和数据分组中的至少一个目的地地址来确定目的地建筑物资源控制设备,并且可以将数据分组发送到目的地建筑物资源控制设备。
    • 2. 发明申请
    • AIRFOIL ICING CONTROLLER APPARATUSES, METHODS AND SYSTEMS
    • 飞行器控制器设备,方法和系统
    • WO2014106269A1
    • 2014-07-03
    • PCT/US2013/078541
    • 2013-12-31
    • TELVENT DTN LLC
    • MCCANN, DonaldBLOCK, James H.LENNARTSON, Daniel W.
    • B64D15/00
    • B64D15/20B64D15/00B64D31/06G01C21/20G08G5/0013G08G5/0021G08G5/0034G08G5/0039G08G5/0091
    • The airfoil icing controller apparatuses, methods and systems ("AIC") transforms weather and flight parameter data via AIC components into icing determinations and icing avoidance optimized flight plans based on airfoil type. In one implementation, the AIC comprises a processor and a memory disposed in communication with the processor and storing processor-issuable instructions to receive anticipated flight plan parameter data, obtain weather data based on the flight plan parameter data, obtain atmospheric data based on the flight plan parameter data, and determine a plurality of four-dimensional grid points based on the flight plan parameter data. The AIC may then determine a percent power increase (PPI) required by the aircraft to overcome power loss due to icing conditions. With dynamic, (near) real-time icing information and/or predictive icing forecast specific to airfoil type, the AIC may allow aircraft to effeciently avoid areas where PPI is greater than a predetermined percentage and/or avoid areas where dangerous icing may occur.
    • 机翼结冰控制装置,方法和系统(“AIC”)通过AIC组件将天气和飞行参数数据转换为基于翼型的结冰确定和结冰避免优化飞行计划。 在一个实现中,AIC包括处理器和与处理器通信的存储器,并且存储处理器可发出的指令以接收预期的飞行计划参数数据,基于飞行计划参数数据获得天气数据,基于飞行获得大气数据 计划参数数据,并且基于飞行计划参数数据确定多个四维网格点。 然后,AIC可以确定飞机需要的百分比功率增加(PPI)来克服由于结冰条件引起的功率损耗。 通过动态(近)实时结冰信息和/或特定于翼型的预测结冰预测,AIC可以允许飞机有效地避免PPI大于预定百分比的区域和/或避免可能发生危险结冰的区域。
    • 5. 发明申请
    • IMPLANT APPLICATORS AND METHODS OF ADMINISTERING IMPLANTS
    • 植入式植入物和施用方法
    • WO2016144832A1
    • 2016-09-15
    • PCT/US2016/021081
    • 2016-03-04
    • ENVISIA THERAPEUTICS, INC.
    • NAVRATIL, TomasDELGADO, JessieHUNTER, Michael
    • A61M31/00
    • A61F9/007A61F9/0017
    • Embodiments described herein relate generally to medical implant delivery apparatuses and methods. In some embodiments, an apparatus comprises a second cap, a needle hub at least partially disposed within the second cap, a pusher wire and a pusher wire connector disposed within the needle hub, a needle and a first cap. The second cap includes a proximal end, a distal end, and a longitudinal axis. The needle includes a first, beveled end configured to receive an implant, and a second end disposed within a hub pocket of the needle hub. The first cap is connected to the needle hub and disposed at a proximal end of the second cap. The pusher wire, the pusher wire connector, and the needle are substantially aligned with one another along the longitudinal axis of the second cap. In some embodiments, the pusher wire is sized to be received in the bore of the needle.
    • 本文所述的实施方式一般涉及医用植入物递送装置和方法。 在一些实施例中,一种装置包括第二帽,至少部分地布置在第二帽内的针座,推动线和设置在针座内的推动线连接器,针和第一帽。 第二盖包括近端,远端和纵向轴线。 针包括构造成接收植入物的第一斜面端部和设置在针座的轮毂口袋内的第二端。 第一盖连接到针毂并设置在第二盖的近端。 推杆,推杆连接器和针沿着第二盖的纵向轴线彼此基本对齐。 在一些实施例中,推动线的尺寸设置成容纳在针的孔中。
    • 6. 发明申请
    • DYNAMIC TURBULENCE ENGINE CONTROLLER APPARATUSES, METHODS AND SYSTEMS
    • 动力学发动机控制器装置,方法和系统
    • WO2014106273A1
    • 2014-07-03
    • PCT/US2013/078546
    • 2013-12-31
    • TELVENT DTN LLC
    • MCCANN, DonaldBLOCK, James, H.LENNARTSON, Daniel, W.
    • B64C13/16
    • G08G5/0091G08G5/0013G08G5/0021G08G5/0034G08G5/0039
    • The Dynamic Turbulence Engine Controller Apparatuses, Methods And Systems ("DTEC") transform weather, terrain, and flight parameter data via DTEC components into turbulence avoidance optimized flight plans. In one implementation, the DTEC comprises a processor and a memory disposed in communication with the processor and storing processor-issuable instructions to receive anticipated flight plan parameter data, obtain terrain data based on the flight plan parameter data, obtain atmospheric data based on the flight plan parameter data, and determine a plurality of four-dimensional grid points based on the flight plan parameter data. The DTEC may then determine a non-dimensional mountain wave amplitude and mountain top wave drag, an upper level non-dimensional gravity wave amplitude, and a buoyant turbulent kinetic energy. The DTEC determines a boundary layer eddy dissipation rate, storm velocity, and eddy dissipation rate from updrafts, maximum updraft speed at grid point equilibrium level and storm divergence while the updraft speed is above the equilibrium level and identify storm top. The DTEC determines storm overshoot and storm drag, Doppler speed, eddy dissipation rate above the storm top, and determine eddy dissipation rate from downdrafts. The DTEC then determines the turbulent kinetic energy for each grid point and identifies an at least one flight plan based on the flight plan parameter data and the determined turbulent kinetic energy.
    • 动态湍流发动机控制器设备,方法和系统(“DTEC”)通过DTEC组件将天气,地形和飞行参数数据转换成湍流避免优化的飞行计划。 在一个实施方案中,DTEC包括处理器和与处理器通信的存储器,并且存储可处理器发出的指令以接收预期的飞行计划参数数据,基于飞行计划参数数据获得地形数据,基于飞行获得大气数据 计划参数数据,并且基于飞行计划参数数据确定多个四维网格点。 然后,DTEC可以确定无量纲山波振幅和山顶波阻力,上层无量纲重力波振幅和浮力湍动动能。 DTEC确定上升气流的边界层涡流耗散率,风速和涡流耗散率,网格点平衡水平下的最大上升气流速度和风向分歧,同时上升气流速度高于平衡水平,识别风暴顶部。 DTEC确定风暴过冲和风暴阻力,多普勒速度,风暴顶部以上的涡流耗散率,并确定来自下降的涡流耗散率。 DTEC然后确定每个网格点的湍流动能,并根据飞行计划参数数据和确定的湍流动能识别至少一个飞行计划。
    • 9. 发明申请
    • GRAIN POSITION PLATFORM MANAGER APPARATUSES, METHODS AND SYSTEMS
    • 颗粒位置平台管理器设备,方法和系统
    • WO2013148290A1
    • 2013-10-03
    • PCT/US2013/031784
    • 2013-03-14
    • TELVENT DTN LLC
    • TRAUGER, Charles E.AUBITZ, ScottDWYER, Mary RoseRYDBERG, KrisKARL, AndyFRIEDRICHSEN TANGEN, Mary S.
    • G06Q50/02
    • G06Q10/06
    • The GPPM transforms producer crop asset information via GPPM components into dynamic, automated, real-time, and/or near real-time inventory updates, comprehensive agricultural portfolio information, offers, sales and/or purchase agreements, and/or dynamic, automated, real-time and/or near real-time market updates and feeds. The GPPM also provides online producer inventory integration with internal and external sources, geo-spatial commodity sensory location and updates, and dynamic, automated, real-time, and/or near real-time market and benchmark analyses. The GPPM receives crop asset storage resource information, such as location data for crop storage resource(s). The received information is associated with a producer crop asset management account. Mobile devices may be associated with the account. The GPPM determines when an associated mobile device is within a specified distance of a storage resource location and notifies the mobile device. The GPPM receives dynamic crop volume data for the crop storage resource and associates it with the producer crop asset management account.
    • GPPM通过GPPM组件将生产者作物资产信息转化为动态,自动化,实时和/或近实时库存更新,综合农业投资组合信息,报价,销售和/或采购协议,和/或动态,自动化, 实时和/或近实时市场更新和Feed。 GPPM还提供在线生产者库存与内部和外部来源的集成,地理空间商品感觉位置和更新,以及动态,自动化,实时和/或近实时的市场和基准分析。 GPPM接收作物资源存储资源信息,例如作物存储资源的位置数据。 收到的信息与生产者作物资产管理帐户相关联。 移动设备可能与帐户相关联。 GPPM确定何时关联的移动设备在存储资源位置的指定距离内,并通知移动设备。 GPPM接收作物存储资源的动态作物体积数据,并将其与生产者作物资产管理帐户相关联。
    • 10. 发明申请
    • SYSTEMS AND METHODS FOR AUTOMATICALLY SECURING AND VALIDATING MULTI-SERVER ELECTRONIC COMMUNICATIONS OVER A PLURALITY OF NETWORKS
    • 用于自动安全和验证多个网络的多服务器电子通信的系统和方法
    • WO2017044836A1
    • 2017-03-16
    • PCT/US2016/051086
    • 2016-09-09
    • PAY WITH PRIVACY, INC.
    • KRUSE, JasonJIANG, BolingROTH, Andrew
    • H04L29/06H04L9/08
    • G06Q20/401H04L9/14H04L9/30H04L9/3247H04L63/0407H04L63/0442H04L63/06H04L2209/56
    • This disclosure relates to methods and systems for automatically securing and validating multi-server electronic communications over a plurality of networks, without requiring additional physical or programmatic infrastructure on the intermediary servers. A processor-executable component can be transmitted from a first server to a compute device, where it generates a pair of asymmetric cryptographic parameters. The first server uses one of those parameters to verify subsequent communications from the component and respond with tagged privacy communication strings, which the component can provide to a second server as part of a secure communication exchange. The first server can then receive secure communication exchange approval request from a third server, and analyzes the request to determine a validity metric. If the validity metric meets a specified threshold, the first server transmits a validation of the secure communication exchange approval request to verify and complete a secure data exchange between the compute device and the second server.
    • 本公开涉及用于在多个网络上自动保护和验证多服务器电子通信的方法和系统,而不需要中间服务器上的额外的物理或程序化基础设施。 处理器可执行组件可以从第一服务器传输到计算设备,其中它生成一对非对称加密参数。 第一个服务器使用这些参数之一来验证来自组件的后续通信,并用标记的隐私通信字符串进行响应,该组件可以作为安全通信交换的一部分提供给第二服务器。 然后,第一服务器可以从第三服务器接收安全通信交换批准请求,并且分析该请求以确定有效性度量。 如果有效性度量符合指定的阈值,则第一服务器发送安全通信交换批准请求的验证,以验证计算设备和第二服务器之间的安全数据交换。