会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 82. 发明申请
    • COBALT CARBIDE-BASED NANOPARTICLE PERMANENT MAGNET MATERIALS
    • 碳酸钴基纳米材料永磁材料
    • WO2011032007A1
    • 2011-03-17
    • PCT/US2010/048477
    • 2010-09-10
    • NORTHEASTERN UNIVERSITYHARRIS, Vincent, G.
    • HARRIS, Vincent, G.
    • B22F9/14B22F9/16B22F1/02
    • H01F1/11B22F1/0018B22F9/24C01B32/914C01P2004/10C22C32/0052C22C2202/02H01F1/065H01F1/09Y10S977/838
    • A composition of a crystalline ferromagnetic material based upon nanoscale cobalt carbide particles and to a method of manufacturing the ferromagnetic material of the invention via a polyol reaction are disclosed. The crystalline ferromagnetic cobalt carbide nanoparticles of the invention are useful for high performance permanent magnet applications. The processes according to the invention are extendable to other carbide phases, for example to Fe-, FeCo-carbides. Fe- and FeCo-carbides are realizable by using as precursor salts Fe-, Co-, and mixtures of Fe- and Co-salts, such as acetates, nitrates, chlorides, bromides, citrates, and sulfates, among others. The materials according to the invention include mixtures and/or admixtures of cobalt carbides, as both Co 2 C and Co 3 C phases. Mixtures may take the form of a collection of independent particles of Co 2 C and Co 3 C or as a collection of particles which consist of an intimate combination of Co 2 C and Co 3 C phases within individual particles. The relative proportions of these two phases as well as the morphology of each phase contribute to their attractive permanent magnet properties, particularly at low temperatures through room temperature and up to over 400 K.
    • 公开了基于纳米级碳化钴颗粒的结晶铁磁材料的组合物和通过多元醇反应制备本发明的铁磁材料的方法。 本发明的结晶铁磁钴碳纳米颗粒可用于高性能永久磁铁应用。 根据本发明的方法可扩展到其它碳化物相,例如Fe-,FeCo-碳化物。 Fe-和FeCo-碳化物可以通过使用Fe-,Co-,以及Fe-和Co-盐的混合物如乙酸盐,硝酸盐,氯化物,溴化物,柠檬酸盐和硫酸盐等作为前体盐来实现。 根据本发明的材料包括作为Co 2 C和Co 3 C两相的碳化钴的混合物和/或混合物。 混合物可以采用Co2C和Co3C的独立颗粒的集合的形式,或者作为由单个颗粒内的Co2C和Co3C相的紧密组合组成的颗粒的集合。 这两个相的相对比例以及各相的形态有助于其有吸引力的永磁体性质,特别是在室温低至高达400K的低温下。