会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 33. 发明申请
    • FLOW BATTERY BALANCING CELLS HAVING A BIPOLAR MEMBRANE AND METHODS FOR USE THEREOF
    • 具有双极膜的流动电池平衡电池及其使用方法
    • WO2016168362A1
    • 2016-10-20
    • PCT/US2016/027368
    • 2016-04-13
    • LOCKHEED MARTIN ADVANCED ENERGY STORAGE, LLC
    • REECE, Steven Y.
    • H01M8/04H01M8/18H01M10/42
    • H01M8/188H01M8/04186H01M8/04276H01M8/1023H01M8/1039H01M8/20Y02E60/528
    • Parasitic reactions, such as production of hydrogen and oxidation by oxygen, can occur under the operating conditions of flow batteries and other electrochemical systems. Such parasitic reactions can undesirably impact operating performance by altering the pH and/or state of charge of one or both electrolyte solutions in a flow battery. Electrochemical balancing cells configured for addressing the effects of parasitic reactions can include: a first chamber containing a first electrode, a second chamber containing a second electrode, a third chamber disposed between the first chamber and the second chamber, an ion-selective membrane forming a first interface between the first chamber and the third chamber, and a bipolar membrane forming a second interface between the second chamber and the third chamber. Such electrochemical balancing cells can be placed in fluid communication with at least one half-cell of a flow battery.
    • 在流动电池和其他电化学系统的操作条件下,可以发生寄生反应,例如氢的产生和氧的氧化。 通过改变流动电池中的一种或两种电解质溶液的pH和/或电荷状态,这种寄生反应可能不期望地影响操作性能。 配置用于解决寄生反应的影响的电化学平衡单元可以包括:包含第一电极的第一室,包含第二电极的第二室,设置在第一室和第二室之间的第三室,形成 第一室和第三室之间的第一界面,以及在第二室和第三室之间形成第二界面的双极膜。 这种电化学平衡电池可以被放置成与流动电池的至少一个半电池流体连通。
    • 35. 发明申请
    • MITIGATION OF PARASITIC REACTIONS WITHIN FLOW BATTERIES
    • 在流动电池中缓解反应的反应
    • WO2016168087A1
    • 2016-10-20
    • PCT/US2016/026803
    • 2016-04-08
    • LOCKHEED MARTIN ADVANCED ENERGY STORAGE, LLC
    • MORRIS-COHEN, AdamPURANAM, SrivatsavaGOELTZ, JohnESSWEIN, Arthur J.
    • H01M8/18H01M2/16H01M8/20
    • H01M8/0258H01M4/96H01M8/0228H01M8/188Y02E60/528
    • Productive electrochemical reactions can often occur most effectively in proximity to a separator dividing an electrochemical cell into two half-cells. Parasitic reactions can often occur at locations more removed from the separator. Parasitic reactions are generally undesirable in flow batteries and other electrochemical systems, since they can impact operating performance. Flow batteries having a decreased incidence of parasitic reactions can include, a first half-cell containing a first electrode, a second half-cell containing a second electrode, a separator disposed between the first half-cell and the second half-cell and contacting the first and second electrodes, a first bipolar plate contacting the first electrode, and a second bipolar plate contacting the second electrode, where a portion of the first electrode or the first bipolar plate contains a dielectric material. The first electrode and the first bipolar plate still define a contiguous electrically conductive pathway when containing the dielectric material.
    • 生产性电化学反应通常最有效地发生在将电化学电池分成两个半电池的隔板附近。 寄生反应通常发生在更多从分离器中去除的位置。 流动电池和其他电化学系统通常不期望寄生反应,因为它们可能影响操作性能。 具有降低的寄生反应发生率的流动电池可以包括:包含第一电极的第一半电池,包含第二电极的第二半电池,设置在第一半电池和第二半电池之间的隔板, 第一和第二电极,接触第一电极的第一双极板和接触第二电极的第二双极板,其中第一电极或第一双极板的一部分包含电介质材料。 当包含电介质材料时,第一电极和第一双极板仍然限定连续的导电路径。
    • 36. 发明申请
    • ELECTROCHEMICAL SYSTEMS INCORPORATIONG IN SITU SPECTROSCOPIC DETERMINATION OF STATE OF CHARGE
    • 电化学系统在电荷状态的光谱测定中的应用
    • WO2016094436A3
    • 2016-08-18
    • PCT/US2015064545
    • 2015-12-08
    • LOCKHEED MARTIN ADVANCED ENERGY STORAGE LLC
    • PIJERS JOSEPH JOHANNES HENRICUS
    • G01N27/30G01N21/35G01N21/55
    • H01M8/04477G01N21/552G01N21/8507G01R31/3606H01M8/04604H01M8/188Y02E60/528
    • State of charge determination within electrochemical systems, such as flow batteries, can often be difficult to measure, particularly in an in situ manner. Methods for assaying the condition of an electrochemical system can include: interacting electromagnetic radiation with a first electrolyte solution at a location within the electrochemical system, the electromagnetic radiation being delivered through an optical material configured to exhibit attenuated total reflectance at an interface between the optical material and the first electrolyte solution; receiving at a detector electromagnetic radiation that has interacted with the first electrolyte solution via one or more attenuated total reflectances within the optical material; and measuring an absorbance of at least one of an oxidized form or a reduced form of a first coordination compound within the first electrolyte solution via the electromagnetic radiation that is received at the detector.
    • 电化学系统(如流动电池)中的电荷状态常常难以测量,特别是以原位方式测量。 用于测定电化学系统状况的方法可以包括:将电磁辐射与电化学系统内的位置处的第一电解质溶液相互作用,电磁辐射通过配置成在光学材料之间的界面处呈现衰减的全反射率的光学材料 和第一电解质溶液; 在检测器处接收经由光学材料内的一个或多个衰减的全反射与第一电解质溶液相互作用的电磁辐射; 以及通过在检测器处接收的电磁辐射,测量第一电解质溶液中第一配位化合物的氧化形式或还原形式的至少一种的吸光度。
    • 37. 发明申请
    • APPARATUS AND METHOD FOR ESTIMATING ABSOLUTE AXES' ORIENTATIONS FOR A MAGNETIC DETECTION SYSTEM
    • 用于估计用于磁检测系统的绝对轴的方位的装置和方法
    • WO2016126435A1
    • 2016-08-11
    • PCT/US2016/014331
    • 2016-01-21
    • LOCKHEED MARTIN CORPORATION
    • MANICKAM, ArulKAUP, Peter, G.STETSON, John, B., Jr.
    • G01R35/00G01R33/02G01R33/032
    • G01R33/032
    • A system for determining an orientation of a nitrogen vacancy (NV) diamond material is disclosed. The system includes the NV diamond material having a plurality of NV centers, a magnetic field generator that generates a magnetic field, a radio frequency (RF) excitation source that provides RF excitation, an optical excitation source that provides optical excitation, an optical detector that receives an optical signal emitted by the NV diamond material, and a controller. The controller controls the magnetic field generator to generate a control magnetic field and controls the magnetic field generator to successively generate calibration magnetic fields. The controller successively receives light detection signals from the optical detector, stores measurement values based on the successively received light detection signals, and calculates an orientation of the NV diamond material based on the stored measurement values.
    • 公开了一种用于确定氮空位(NV)金刚石材料取向的系统。 该系统包括具有多个NV中心的NV金刚石材料,产生磁场的磁场发生器,提供RF激励的射频(RF)激发源,提供光激发的光激励源,光学检测器 接收由NV金刚石材料发射的光信号和控制器。 控制器控制磁场发生器产生控制磁场,并控制磁场发生器连续生成校准磁场。 控制器依次从光学检测器接收光检测信号,存储基于连续接收的光检测信号的测量值,并根据存储的测量值计算NV菱形材料的取向。
    • 38. 发明申请
    • QUANTUM OTTO ENGINE
    • 量子OTTO发动机
    • WO2016123450A1
    • 2016-08-04
    • PCT/US2016/015581
    • 2016-01-29
    • LOCKHEED MARTIN CORPORATIONKOC UNIVERSITY
    • ALLEN, Edward HenryMUSTECAPLIOGLU, Ozgur E.ALTINTAS, FerdiHARDAL, Ali Umit Cemal
    • F01K27/00
    • F01K13/00B82Y99/00F01K27/00G01R33/035G01R33/1284
    • Systems and methods for operating a quantum Otto cycle, including a superconducting LC resonator circuit electrically coupled to an input control unit with a reservoir source and a waveform generator configured to generate a bias current. A superconducting flux qubit is coupled to the LC resonator via a superconducting quantum interference device ("SQUID"). The SQUID generates a flux in the presence of the bias current, and the flux generated by the SQUID mediates a coupling rate between the flux qubit and the LC resonator. The waveform generator alternates the bias current to adiabatically change the coupling rate between the flux qubit and the LC resonator during adiabatic stages of the quantum Otto cycle. The reservoir source sends pulses to thermalize the flux qubit and the LC resonator system during isochoric stages of the quantum Otto cycle.
    • 用于操作量子Otto循环的系统和方法,包括电耦合到具有储存器源的输入控制单元的超导LC谐振器电路和被配置为产生偏置电流的波形发生器。 超导通量量子位通过超导量子干涉装置(“SQUID”)耦合到LC谐振器。 SQUID在存在偏置电流的情况下产生磁通,并且由SQUID产生的磁通介导通量量子位与LC谐振器之间的耦合速率。 在量子奥托循环的绝热阶段,波形发生器交替偏置电流以绝热地改变磁通量子位与LC谐振器之间的耦合速率。 储层源在量子奥托循环的等时阶段发送脉冲以热量流量量子位和LC谐振器系统。