会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Multiple driven C magnet
    • 多驱动C磁铁
    • US5675305A
    • 1997-10-07
    • US682426
    • 1996-07-17
    • Gordon D. DeMeesterMichael A. Morich
    • Gordon D. DeMeesterMichael A. Morich
    • G01R33/3815A61B5/055G01R33/38G01R33/387H01F7/22
    • G01R33/3806
    • A ferromagnetic flux path (20) extends between pole pieces (30,32). A superconducting coil (62) in series with a persistence switch (64) encircles the flux path. A pair of resistive coils (50,52) are disposed one at each pole piece. The resistive coils are overdriven near to the point of thermal failure to produce a 0.5 T or other preselected field strength in a gap between the pole pieces. The persistence switch is closed to stabilize and hold the flux through the superconducting coil. The resistive magnets are ramped down or shut off. During imaging, a smaller amount of current is directed to the resistive coils to supplement and focus the magnetic field from the superconducting coil through the gap between the poles. In this manner, high strength magnetic fields are generated in the gap using a relatively inexpensive combination of resistive and superconducting coils.
    • 铁磁通路(20)在极片(30,32)之间延伸。 与持续开关(64)串联的超导线圈(62)围绕磁通路径。 一对电阻线圈(50,52)一个设置在每个极片上。 电阻线圈在热故障点附近过载,在极片之间的间隙产生0.5T或其他预选场强。 持续开关闭合以稳定并保持通过超导线圈的通量。 电阻磁铁斜坡或关闭。 在成像期间,较小量的电流被引导到电阻线圈以补充并聚焦来自超导线圈的磁场通过极之间的间隙。 以这种方式,使用电阻和超导线圈的相对便宜的组合在间隙中产生高强度磁场。
    • 3. 发明授权
    • Open MRI magnet with homogeneous imaging volume
    • 打开具有均匀成像体积的MRI磁体
    • US5574417A
    • 1996-11-12
    • US547002
    • 1995-10-23
    • Bizhan DorriEvangelos T. Laskaris
    • Bizhan DorriEvangelos T. Laskaris
    • G01R33/38G01R33/3815H01F7/22G01V3/00
    • G01R33/3806G01R33/3815
    • An open magnetic resonance imaging (MRI) magnet having first and second spaced-apart superconductive coil assemblies each including a toroidal-shaped coil housing containing a superconductive main coil. A generally annular-shaped permanent magnet array is associated with each coil assembly, being generally coaxially aligned with the associated coil assembly and being spaced radially inward and radially apart from the associated coil assembly's superconductive main coil. The permanent magnet arrays overcome the gross magnetic field distortions in the imaging volume of the superconductive main coils (created by the open space between the magnet's superconductive coil assemblies) to produce a magnetic field of high uniformity within the imaging volume.
    • 一种具有第一和第二间隔开的超导线圈组件的开放式磁共振成像(MRI)磁体,每个包括包含超导主线圈的环形线圈壳体。 大致环形的永磁体阵列与每个线圈组件相关联,其大体上与相关联的线圈组件同轴对准并且相对于相关联的线圈组件的超导主线圈径向向内和径向间隔开。 永磁体阵列克服了超导主线圈(由磁体超导线圈组件之间的开放空间产生)的成像体积中的总磁场失真,从而在成像体积内产生高均匀性的磁场。
    • 5. 发明授权
    • Flux transformer formed of an oxide superconducting thin film and method
for manufacturing the same
    • 由氧化物超导薄膜形成的磁通变压器及其制造方法
    • US5548262A
    • 1996-08-20
    • US412906
    • 1995-03-29
    • Hirokazu KugaiTatsuoki Nagaishi
    • Hirokazu KugaiTatsuoki Nagaishi
    • G01R33/035H01F6/06H01L39/22H01F7/22H01L39/24
    • G01R33/0358Y10S505/705
    • A flux transformer comprises a pickup coil 1, an input coil 2 and a pair of lines 3, 4. The line 4 contains a bridge part 4a intersecting the input coil 2. The pickup coil 1, input coil 2 and a pair of lines 3, 4 are formed of a first and a second oxide superconducting thin films 11, 13. Furthermore, the flux transformer comprises a non-superconducting thin film 12. The non-superconducting thin film 12 is disposed between the first and the second oxide superconducting thin films 11, 13 and is located in a domain wherein the line 4 intersects the input coil 2. A pattern of the first oxide superconducting thin film 11 corresponds to the pickup coil 1, the input coil 2 and the lines 3,4 except the bridge part 4a. The pattern of the second oxide superconducting thin film 13 corresponds to the input coil 2 except the domain where the non-superconducting thin film exits, the pickup coil 1 and the lines 3,4. Except in the domain where the non-superconducting thin film 12 exists, the second oxide superconducting thin film 13 are piled up directly atop the first oxide superconducting thin film 11 in all domains.
    • 磁通变压器包括拾波线圈1,输入线圈2和一对线路3,4,线路4包含与输入线圈2相交的桥接部分4a。拾波线圈1,输入线圈2和一对线3 ,4由第一和第二氧化物超导薄膜11,13形成。此外,磁通变压器包括非超导薄膜12.非超导薄膜12设置在第一和第二氧化物超导薄膜 薄膜11,13位于其中线4与输入线圈2相交的区域中。第一氧化物超导薄膜11的图形对应于拾波线圈1,输入线圈2和除桥外的线3,4 第4a部分。 第二氧化物超导薄膜13的图案对应于除了非超导薄膜离开的区域,拾取线圈1和线3,4之外的输入线圈2。 除了存在非超导薄膜12的区域之外,第二氧化物超导薄膜13在所有区域中直接堆叠在第一氧化物超导薄膜11上。
    • 6. 发明授权
    • High-temperature superconductor and its use
    • 高温超导体及其用途
    • US5379020A
    • 1995-01-03
    • US243167
    • 1994-05-16
    • Jurg MeierWilli Paul
    • Jurg MeierWilli Paul
    • H01B12/02H01F6/02H01L39/16H02H7/00H02H9/02H01F7/22
    • H02H9/023H01F6/02H01L39/16H01F2006/001H02H7/001Y02E40/68Y02E40/69Y10S336/01Y10S505/701Y10S505/704Y10S505/705Y10S505/85Y10S505/879Y10S505/88
    • In the case of high-temperature superconductors (6) which are used as inductive current limiters, unless any special precautionary measure is taken, there is a risk that short-circuit currents can lead to local stress centers and hot spots, and to local destruction of the high-temperature superconductor. In order to avoid this, a hollow cylinder (SL) of the high-temperature superconductor (6) is coated with a 1 .mu.m thick conductive-silver layer (E1). A second 10 .mu.m thick metal layer of foil made of silver or aluminum can be deposited thereon. In order to reduce or to avoid tensile stresses in the ceramic of the hollow cylinder (SL) made of a high-temperature superconductor, and in order to reduce the electrical contact resistance of the metal layers, this hollow cylinder (SL) has a mechanical reinforcing element (7), made of an elastic steel wire, wound around it, at room temperature, under tensile stress. Subsequently, this reinforcing element (7) is fixed by means of a solder or a cold-resistant synthetic resin (8), so that reinforcing element tensile stress and a compressive pressure on the hollow cylinder (SL) are maintained even at temperatures below 100K.
    • 对于用作感应电流限制器的高温超导体(6),除非采取特殊的预防措施,否则存在短路电流会导致局部应力中心和热点以及局部破坏的风险 的高温超导体。 为了避免这种情况,高温超导体(6)的中空圆筒(SL)被涂覆有1μm厚的导电银层(E1)。 可以在其上沉积第二个10微米厚的由银或铝制成的金属箔的金属层。 为了减少或避免由高温超导体制成的中空圆筒(SL)的陶瓷中的拉伸应力,为了降低金属层的电接触电阻,该空心圆筒(SL)具有机械 加强元件(7),由弹性钢丝制成,在室温下,在拉伸应力下缠绕在其上。 随后,该加强元件(7)通过焊料或耐寒合成树脂(8)固定,使得即使在低于100K的温度下也能够保持中空圆筒(SL)上的增强元件拉伸应力和压缩压力 。
    • 7. 发明授权
    • Ultrashort cylindrical shielded electromagnet for magnetic resonance
imaging
    • 用于磁共振成像的超短圆柱形屏蔽电磁铁
    • US5359310A
    • 1994-10-25
    • US869544
    • 1992-04-15
    • Sergio Pissanetzky
    • Sergio Pissanetzky
    • G01R33/38G01R33/3815G01R33/3875G01R33/421G01V3/00H01F3/00H01F7/22
    • G01R33/3815G01R33/3806G01R33/3875G01R33/421
    • A superconducting magnet suitable for use in magnetic resonance imaging applications is disclosed. A plurality of driving coils are located around a cylindrical bore, for generating an axial magnetic field therein. At the ends of the magnet, within the same cryostat as the driving coils, first and second shielding coils are located, each carrying a current of opposite polarity relative to the driving coils. The location, size, and current in the coils are determined by a methodology in which the error between the desired field and the simulated field is minimized at target locations within the bore and outside of the bore. A flux return is disposed in the gap between the first and second shielding coils, so that the shielding coils inject return magnetic flux into the flux return. The flux return may be of iron, or may consist of a superconducting coil. The resulting magnet has relatively low superconductor cost as well as relatively low weight, due to the efficient use of both superconductor and iron.
    • 公开了一种适用于磁共振成像应用的超导磁体。 多个驱动线圈位于圆筒形孔周围,用于在其中产生轴向磁场。 在磁体的端部,在与驱动线圈相同的低温恒温器内,定位有第一和第二屏蔽线圈,每个具有相对于驱动线圈相反极性的电流。 线圈中的位置,尺寸和电流通过一种方法来确定,其中期望的场和模拟场之间的误差在孔的内部和外部的目标位置被最小化。 在第一和第二屏蔽线圈之间的间隙中设置磁通返回,使得屏蔽线圈将返回磁通注入到磁通返回中。 磁通返回可以是铁,或者可以由超导线圈组成。 由于有效地使用超导体和铁,所得到的磁体具有相对低的超导体成本以及相对较低的重量。
    • 8. 发明授权
    • Shuntable low loss variable current vapor cooled leads for
superconductive loads
    • 用于超导载荷的可分流低损耗可变电流蒸气冷却引线
    • US5353000A
    • 1994-10-04
    • US069763
    • 1993-06-01
    • Dean G. MorrisMichael HeibergerEdward E. Bowles
    • Dean G. MorrisMichael HeibergerEdward E. Bowles
    • F17C13/00H01F6/06H01F7/22
    • H01F6/065
    • A shuntable low loss variable current vapor cooled lead (VCVCL) configuration delivers current to and from a superconductive load, such as a superconductive magnet, immersed in a cryogenic liquid in a way that minimizes the boil-off rate of the cryogenic liquid. The VCVCL configuration includes superconductive lead assemblies containing superconductive segments. The assemblies are connected in parallel between the superconductive load and an output current source or sink. Each assembly is controlled so that its superconducting segment is either superconducting or non-superconducting. By selectively controlling whether each lead assembly is superconducting or non-superconducting, by varying the cryogenic liquid level, the current flow to or from the superconducting load through the lead assemblies is shunted from those lead assemblies exhibiting a relatively high resistance to those having a relatively low resistance, and the current is selectively distributed between superconducting lead assemblies so that each lead assembly either carries near zero current or an optimum current. At near zero current, the lead assembly contributes very little to the helium boil-off rate because of negligible Joule heating, and because the path of thermal conduction to the liquid helium is significantly more resistive. At or near the optimum current, the helium boil-off rate approaches a theoretical minimum. By keeping the current in each lead assembly at near zero or near the optimum design current, the helium boil-off rate of the VCVCL configuration is minimized and is significantly less than that of conventionally designed lead arrays.
    • 可分流的低损耗可变电流蒸气冷却引线(VCVCL)配置将电流传导到超导电荷,例如超导磁体,浸入低温液体中,以使低温液体的蒸发速率最小化。 VCVCL配置包括包含超导段的超导导线组件。 组件在超导负载和输出电流源或接收器之间并联连接。 每个组件被控制,使得其超导段是超导或非超导。 通过选择性地控制每个引线组件是否是超导或非超导,通过改变低温液位,通过引线组件的超导负载的电流流过与那些具有较高电阻 低电阻,并且电流选择性地分布在超导引线组件之间,使得每个引线组件携带接近零电流或最佳电流。 在接近零电流的情况下,由于可忽略焦耳加热,导线组件对氦的沸腾速率很小,并且因为导致液氦的热传导路径显着更具阻性。 处于或接近最佳电流时,氦蒸发速率接近理论最小值。 通过将每个引线组件中的电流保持在接近零或接近最佳设计电流,VCVCL配置的氦蒸发速率最小化,并且显着小于常规设计的引线阵列。
    • 9. 发明授权
    • Superconducting magnet and fabrication method
    • 超导磁体及其制造方法
    • US5306701A
    • 1994-04-26
    • US662266
    • 1991-02-28
    • Ulf E. IsraelssonDonald M. Strayer
    • Ulf E. IsraelssonDonald M. Strayer
    • H01F6/06H01F7/22
    • H01F6/06Y10T29/49014
    • A method of trapping a field in a block of superconductor material, includes providing (i) a block of material defining a bore, (ii) a high permeability core within the bore that defines a low reluctance path through the bore, (iii) a high permeability external structure on the exterior of the block of material that defines a low reluctance path between opposite ends of the core, and (iv) an electromagnet configured to apply a magnetic field around the high permeability core. The method proceeds by energizing the electromagnet to produce an applied magnetic field around the high permeability core, cooling the block of material sufficiently to render the block of material superconducting, de-energizing the electromagnet to result in a trapped magnetic field, and at least partially removing the low reluctance path defined by the core and the external structure in order to increase the magnetic flux density of the trapped magnetic field.
    • 一种捕获超导体材料块中的场的方法包括提供(i)限定孔的材料块,(ii)孔内的高磁导率芯,其限定穿过该孔的低磁阻路径,(iii) 材料块外表面上的高磁导率外部结构,其限定了芯的相对端之间的低磁阻路径,以及(iv)电磁体,其配置为在高磁导率芯周围施加磁场。 该方法通过激励电磁体以在高磁导率芯周围产生施加的磁场,以充分冷却材料块以使材料块超导,使电磁体断电以导致被俘获的磁场,并且至少部分地 去除由芯和外部结构限定的低磁阻路径,以便增加被俘获磁场的磁通密度。