会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Device and method for simulation of magnetohydrodynamics
    • 磁流体力学模拟装置及方法
    • US08073094B2
    • 2011-12-06
    • US11976364
    • 2007-10-24
    • Nassim Haramein
    • Nassim Haramein
    • H05H1/22H05H1/02H05H1/12
    • G06F17/5009G06F2217/16G09B23/06H02K44/085H05H1/03
    • A magnetohydrodynamic simulator that includes a plasma container. The magnetohydrodynamic simulator also includes an first ionizable gas substantially contained within the plasma container. In addition, the magnetohydrodynamic simulator also includes a first loop positioned adjacent to the plasma container, wherein the first loop includes a gap, a first electrical connection on a first side of the gap, a second electrical connection of a second side of the gap, and a first material having at least one of low magnetic susceptibility and high conductivity. The first loop can be made up from an assembly of one or a plethora or wire loop coils. In such cases, electrical connection is made through the ends of the coil wires. The magnetohydrodynamic simulator further includes an electrically conductive first coil wound about the plasma container and through the first loop.
    • 包括等离子体容器的磁流体动力学模拟器。 磁流体动力学模拟器还包括基本上包含在等离子体容器内的第一可电离气体。 此外,磁流体动力学模拟器还包括邻近等离子体容器定位的第一回路,其中第一回路包括间隙,间隙的第一侧上的第一电连接,间隙的第二侧的第二电连接, 以及具有低磁化率和高导电率中的至少一种的第一材料。 第一个回路可以由一个或多个绕组线圈组成。 在这种情况下,通过线圈线的端部进行电连接。 磁流体动力学模拟器还包括缠绕在等离子体容器上并通过第一回路的导电的第一线圈。
    • 6. 发明授权
    • Magnetohydrodynamic energy conversion device using a heat exchanger
    • 使用热交换器的磁流体动力转换装置
    • US07554223B1
    • 2009-06-30
    • US11478065
    • 2006-06-29
    • Thomas P. Kay
    • Thomas P. Kay
    • H02K44/08
    • H02K44/085F24S23/30F28D15/00Y02E10/40
    • An energy conversion device for generating electricity includes a heat exchanger adapted to receive heat from a heat source. A closed magnetohydrodynamic (MHD) circuit includes a section for extracting heat from a heat exchanger so as to raise the temperature of the flowable electrically conductive material within the MHD circuit. The heat exchanger includes a heat-conductive support adapted to be heated, and a heat-extracting section of the MHD circuit extracts heat from the support. The support may be a metal plate having a sinuous pipe arrangement in heat-conductive contact against each face, one of these pipe arrangements being part of a circuit for heating the plate and the other pipe arrangement being part of the MHD circuit. The heat source may be combustion of a fuel, solar, geothermal, chemical reaction, or waste heat in the form of a hot gas. The heat conductive support may be a metal tube heated, usually by a hot gas, in which case the heat-extracting section of the MHD circuit includes a helical pipe surrounding the tube. The heat-providing means may include a lens arrangement for concentrating solar radiation on one face of the heat exchanger plate.
    • 用于发电的能量转换装置包括适于从热源接收热量的热交换器。 闭合磁流体动力学(MHD)电路包括用于从热交换器提取热量以提高MHD回路内的可流动导电材料的温度的部分。 热交换器包括适于被加热的导热支撑件,并且MHD回路的热提取部分从支撑件提取热量。 支撑件可以是金属板,其具有与每个表面导热接触的弯曲管道布置,这些管道装置中的一个是用于加热板的电路的一部分,而另一个管道装置是MHD电路的一部分。 热源可以是燃气,太阳能,地热,化学反应或以热气体形式的废热的燃烧。 导热支撑件可以是通常由热气体加热的金属管,在这种情况下,MHD电路的热提取部分包括围绕管的螺旋管。 热提供装置可以包括用于将太阳辐射集中在热交换器板的一个面上的透镜装置。
    • 8. 发明授权
    • Modular liquid-metal magnetohydrodynamic (LMMHD) power generation cell
    • 模块化液态金属磁流体动力(LMMHD)发电电池
    • US07166927B2
    • 2007-01-23
    • US11029828
    • 2005-01-05
    • Robert A. KosloverRaymond C. Law
    • Robert A. KosloverRaymond C. Law
    • H02K44/00
    • H02K44/085H02K44/16H02K44/24
    • A LMMHD power generation cell, having a fluid channel in which a conductive fluid is forced to flow in response to an external force. A pair of pressure conveying members such as bellow reservoirs can be used for conveying the external force to the conductive flow. A magnetic field is established across the fluid channel by a pair of magnets. A pair of electrodes is disposed with respect to the fluid channel to collect the electric current induced by the conductive fluid flowing through the magnetic field. The magnets are selected from either permanent magnets or electromagnets. Preferably, the conductive fluid is selected from low-density, low-viscosity, high-conductivity liquid metal such as NaK-78.
    • LMMHD发电单元,其具有流体通道,导体流体响应于外力被迫流动。 可以使用诸如波纹管储存器的一对压力输送构件将外力传递到导电流。 通过一对磁体在流体通道之间建立磁场。 相对于流体通道布置一对电极以收集由流过磁场的导电流体感应的电流。 磁体选自永磁体或电磁铁。 优选地,导电流体选自低密度,低粘度,高导电性液体金属如NaK-78。
    • 9. 发明申请
    • Method for transforming energy and vortex tube for carrying out said method
    • 用于实现所述方法的用于转换能量和涡流管的方法
    • US20040168716A1
    • 2004-09-02
    • US10467681
    • 2003-08-11
    • Oleg Vyacheslavovich GritskevichBoris Olegovich GritskevichViktor Vasilievich LlyinStanislav Afanasievich Lisnyak
    • H01L035/30
    • F25B9/04F05B2260/209F24V40/00H02K44/085
    • The invention relates to the electric-power industry and can be used for producing both thermal and electric energy and for measuring the liquid or gas flow temperature. The aim of the invention is to increase the performance of the vortex tube based on Ranke's effect and to extend the functional capabilities thereof for producing electric energy. The inventive methods for transforming energy of a running liquid or gas flow inside the vortex tube using Ranke's effect are carried out by an additional heating of liquid or gas in the hot part of the vortex tube and/or additional production of electric energy taken from windings (10) mounted on the vortex tube-case (1), the said case being made of a dielectric material. The inventive vortex tube for carrying out the said method comprises a tube-case (1) provided with a cyclone (3) at the end side thereof. Though, the said case is not grounded and is made of an electrically non-conductive material with electro-static properties.
    • 本发明涉及电力工业,并且可用于生产热能和电能以及用于测量液体或气体流动温度。 本发明的目的是提高基于兰克效应的涡流管的性能,并扩展其用于产生电能的功能能力。 使用Ranke效应在涡流管内转化流动液体或气流的能量的本发明方法通过在涡流管的热部分中的液体或气体的附加加热和/或从绕组获得的额外的电能产生来进行 (10),其安装在涡流管壳(1)上,所述壳体由电介质材料制成。 用于执行所述方法的本发明的涡流管包括在其端侧设置有旋风分离器(3)的管壳(1)。 虽然所述壳体不接地并且由具有静电特性的非导电材料制成。
    • 10. 发明授权
    • High expansion magnetohydrodynamic liquid metal generator of electricity
    • 高膨胀磁流体动力学液态金属发电机
    • US5637934A
    • 1997-06-10
    • US82292
    • 1993-06-24
    • Gracio Fabris
    • Gracio Fabris
    • H02K44/08H02K44/10H02K44/12
    • H02K44/12H02K44/085H02K44/10
    • Two-phase LMMHD energy conversion systems have potentially significant advantages over conventional systems such as higher thermal efficiency and substantial simplicity with lower capital and maintenance costs. Maintenance of low velocity slip is of importance for achieving high generator efficiency. A bubbly flow pattern ensures very low velocity slip. The full governing equations have been written out, and a computer prediction code has been developed to analyze performance of a two-phase flow LMMHD generator and nozzle under conditions of no slip. Three different shapes of an LMMHD generator have been investigated. Electrical power outputs are in the 20 kW range. Generator efficiency exceeds 71 percent at an average void fraction of about 70 percent. This is an appreciable performance for a short generator without insulating vanes for minimizing electrical losses in the end regions.
    • 两相LMMHD能量转换系统比传统系统具有潜在的显着优点,例如较高的热效率和基本的简单性,具有较低的资本和维护成本。 保持低速滑移对于实现高发电机效率至关重要。 气泡流动模式确保了非常低的速度滑移。 已经写出了完整的控制方程,并且已经开发了一种计算机预测代码来分析两相流LMMHD发生器和喷嘴在无滑动条件下的性能。 已经研究了三种不同形状的LMMHD发生器。 电力输出功率在20 kW范围内。 发电机效率在70%左右的平均空隙率下超过71%。 对于没有绝缘叶片的短发电机来说,这是一个可观的性能,用于最小化端部区域的电损耗。