会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Automatic centering controller for a machine tool
    • 机床自动定心控制器
    • US4190889A
    • 1980-02-26
    • US936780
    • 1978-08-25
    • Kunihiko EtohKaoru OwaKunimichi Nakashima
    • Kunihiko EtohKaoru OwaKunimichi Nakashima
    • B23Q15/22B23Q17/22G05B19/402G06F15/46
    • G05B19/402G05B2219/45148G05B2219/49113Y02P90/265
    • An automatic centering controller for centering the axis of a tool spindle of a numerically controlled machine tool on the axis of a reference circumferential surface of an article mounted on the machine tool. The controller comprises a touch sensing device mounted in the tool spindle for detecting the touch of a probe thereof with the reference circumferential surface, a pulse generator for applying feed pulses to servomotors through a numerical controller so as to move the tool spindle along X and Y-axes, and a pulse control device connected to the touch sensing device, the numerical controller and the pulse generator. In response to a centering instruction and the touch signal, the pulse control device applies axis designation signals to the numerical controller being under a manual mode and controls the feed pulses applied to the numerical controller so that the tool spindle is first moved along the X-axis so as to position the axis of the tool spindle at the median between two points where the probe touches with the reference circumferential surface on the X-axis and is then moved along the Y-axis so as to position the axis of the tool spindle at the median between two points where the probe touches with the reference circumferential surface on the Y-axis.
    • 一种用于使数控机床的工具主轴的轴线对准安装在机床上的物品的基准圆周表面的轴上的自动定心控制器。 控制器包括安装在工具主轴中的触摸感测装置,用于检测其具有参考圆周表面的探针的触摸;脉冲发生器,用于通过数字控制器将进给脉冲施加到伺服电动机,以沿着X和Y移动工具主轴 以及连接到触摸感测装置,数字控制器和脉冲发生器的脉冲控制装置。 响应于定心指令和触摸信号,脉冲控制装置将轴指定信号施加到手动模式下的数字控制器,并控制施加到数字控制器的进给脉冲,使得刀具主轴首先沿X轴移动, 以使刀具轴的轴线位于探头与X轴上的基准圆周表面接触的两个点之间的中间,然后沿着Y轴移动,以便定位刀具主轴的轴线 在探头与Y轴上的参考圆周表面接触的两点之间的中间位置。
    • 4. 发明授权
    • Center hole machining method for shaft blank and center hole machining apparatus
    • 轴孔加工中心孔加工方法
    • US09120161B2
    • 2015-09-01
    • US13517209
    • 2011-01-21
    • Akihiro Yoshimoto
    • Akihiro Yoshimoto
    • G05B19/19B23B49/04B23Q17/20B23Q17/22G05B19/402
    • B23B49/04B23B2215/16B23Q17/20B23Q17/2233G05B19/402G05B2219/45148G05B2219/49113Y02P90/265
    • A center hole machining method includes first to fifth steps. The first step includes obtaining outer peripheral shape data of a plurality of portions of the shaft blank in an axial direction. The second step includes obtaining a center axis by comparing measured data of the portions of the shaft blank with design data. The third step includes calculating a minimum distance from the center axis to the outer periphery in each of the portions of the shaft blank. The fourth step includes shifting the center axis in a direction of making the minimum distance greater than the machining dimension and repeatedly executing the third step when the minimum distance is less than or equal to the machining dimension. The fifth step includes boring the center hole in an end surface of the shaft blank at a position arranged on a line extended from the center axis.
    • 中心孔加工方法包括第一至第五步骤。 第一步骤包括获得轴坯料的多个部分的轴向外周形状数据。 第二步包括通过将轴坯件的部分的测量数据与设计数据进行比较来获得中心轴线。 第三步骤包括计算在轴坯件的每个部分中的从中心轴线到外周边的最小距离。 第四步包括使最小距离大于加工尺寸的方向移动中心轴线,并且当最小距离小于或等于加工尺寸时重复执行第三步骤。 第五步骤包括在布置在从中心轴延伸的线上的位置处钻孔在轴坯件的端面中的中心孔。
    • 5. 发明授权
    • Method of calibrating an ophthalmic-lens-piercing machine, device used to implement one such method and ophthalmic-lens-machining apparatus comprising one such device
    • 校准眼科穿刺机的方法,用于实施一种这样的方法的装置和包括一个这样的装置的眼用透镜加工装置
    • US07668617B2
    • 2010-02-23
    • US10574980
    • 2004-09-06
    • Michaël VassardJean-Jacques Videcoq
    • Michaël VassardJean-Jacques Videcoq
    • G06F19/00G01D18/00G01D21/00B24B49/00B24B7/19G01B1/00G01M19/00G01P21/00G01C17/38
    • G05B19/401G05B2219/45148G05B2219/45157G05B2219/50033
    • The invention relates to a method of calibrating an ophthalmic-lens-piercing machine, a device used to implement one such method and a ophthalmic-lens-machining apparatus comprising one such device. The inventive method applies to a machine including a piercing tool, a lens support which is associated with a first reference mark (O1, X1, Y1), and programmable tool-control means which are associated with a second reference mark expressing set co-ordinates which define a target piercing point (M). A template is placed on the support, and the template includes pre-applied markings defining a third reference mark (O3, X3, Y3), such that the third reference mark in essentially in line with the first reference mark. The template is pierced at a pre-determined point corresponding to a target point, and an image of the template this point position, and a correction is applied to the set co-ordinates that can compensate for the misalignment. A device is also provided which is used to implement the method, and to an ophthalmic-lens-machining apparatus including one such device.
    • 本发明涉及一种校准眼科透镜机的方法,用于实现一种这样的方法的装置和包括一个这种装置的眼用透镜加工装置。 本发明的方法适用于包括穿孔工具,与第一参考标记(O1,X1,Y1)相关联的透镜支架的机器以及与表示设置坐标的第二参考标记相关联的可编程工具控制装置 其定义目标穿刺点(M)。 模板被放置在支撑上,并且模板包括定义第三参考标记(O3,X3,Y3)的预先应用的标记,使得第三参考标记基本上与第一参考标记相符。 模板在对应于目标点的预定点和该模板此点位置的图像上被刺穿,并且校正被应用于可以补偿该未对准的设置坐标。 还提供了用于实现该方法的装置,以及包括一个这样的装置的眼用透镜加工装置。
    • 6. 发明申请
    • CENTER HOLE MACHINING METHOD FOR SHAFT BLANK AND CENTER HOLE MACHINING APPARATUS
    • 中空孔加工中心孔加工方法
    • US20120259452A1
    • 2012-10-11
    • US13517209
    • 2011-01-21
    • Akihiro Yoshimoto
    • Akihiro Yoshimoto
    • G05B19/19
    • B23B49/04B23B2215/16B23Q17/20B23Q17/2233G05B19/402G05B2219/45148G05B2219/49113Y02P90/265
    • A center hole machining method includes first to fifth steps. The first step includes obtaining outer peripheral shape data of a plurality of portions of the shaft blank in an axial direction. The second step includes obtaining a center axis by comparing measured data of the portions of the shaft blank with design data. The third step includes calculating a minimum distance from the center axis to the outer periphery in each of the portions of the shaft blank. The fourth step includes shifting the center axis in a direction of making the minimum distance greater than the machining dimension and repeatedly executing the third step when the minimum distance is less than or equal to the machining dimension. The fifth step includes boring the center hole in an end surface of the shaft blank at a position arranged on a line extended from the center axis.
    • 中心孔加工方法包括第一至第五步骤。 第一步骤包括获得轴坯料的多个部分的轴向外周形状数据。 第二步包括通过将轴坯件的部分的测量数据与设计数据进行比较来获得中心轴线。 第三步骤包括计算在轴坯件的每个部分中的从中心轴线到外周边的最小距离。 第四步骤包括使最小距离大于加工尺寸的方向移动中心轴线,并且当最小距离小于或等于加工尺寸时重复执行第三步骤。 第五步骤包括在布置在从中心轴延伸的线上的位置处钻孔在轴坯件的端面中的中心孔。
    • 7. 发明授权
    • Optimizing method for regulating the operating state of a guided machine tool comprising a rotating percussion tool during a boring process
    • 在钻孔过程中包括旋转冲击工具的用于调节引导机床的操作状态的优化方法
    • US06854529B2
    • 2005-02-15
    • US10362937
    • 2001-08-30
    • Helge-Björn KuntzeChristian FreyAndreas JacubaschReinhard Plietsch
    • Helge-Björn KuntzeChristian FreyAndreas JacubaschReinhard Plietsch
    • B25D16/00G05B19/416E21B3/06
    • G05B19/416B25D16/00G05B2219/45148G05B2219/49097G05B2219/49098
    • Disclosed is an optimizing method for regulating the operating state of a guided machine tool having a tool rotating at a certain speed and subjected to a percussion frequency during a boring action, in which the tool, subjected in addition to a force, is driven into an object of a given material. The method includes, determination of the parameters characterizing the actual operating state of the machine tool; conduction of an adaptive process analysis based on the determined parameters in order to obtain parameter-specific, relevant characteristics; evaluation of the parameter-specific, relevant characteristics within the framework of a logical decision-making process in order to obtain information characterizing the actual operating state; selection of known reference data of the utilized tool describing the operating state and of the to-be-machined material according to a given quality criterion; determination of an optimum operating point for the machine tool determinable by the rotational speed and percussion frequency by comparison of the information characterizing the actual operating state with the selected reference data; and regulation of the machine tool regarding the rotational speed and percussion frequency based on the determined optimum operating point.
    • 公开了一种用于调节具有以一定速度旋转的工具并且在钻孔动作期间经受打击频率的被引导机床的操作状态的优化方法,其中除了力之外受到的工具被驱动到 给定材料的对象。 该方法包括确定表征机床实际运行状态的参数; 基于确定的参数进行自适应过程分析的传导,以获得参数特定的相关特征; 在逻辑决策过程的框架内评估参数特定的相关特征,以获得表征实际运行状态的信息; 根据给定的质量标准选择描述操作状态和待加工材料的已使用工具的已知参考数据; 通过将表征实际操作状态的信息与所选择的参考数据进行比较,确定通过转速和冲击频率可确定的机床的最佳工作点; 以及基于所确定的最佳工作点来调节机床关于转速和敲击频率。