会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Enhanced boundary layer heat transfer by particle interaction
    • 通过粒子相互作用增强边界层传热
    • US09074828B2
    • 2015-07-07
    • US13654369
    • 2012-10-17
    • ECOPURO, LLC
    • William L. Johnson, Sr.
    • F28F13/02F28F13/12F28F7/00B29C44/34
    • F28F7/00B29C44/3415B29C44/3469
    • Enhanced heat transfer by kinetic movement of boundary layer film by introducing particles with specialized surfaces. A boundary layer is stagnant, reducing heat transfer into a flowing fluid. Boundary layer heat transfer is primarily conduction. The introduction of specialized particles into fluid promotes boundary layer mixing, thereby converting conduction to convection through the film. Particles of the invention tumble while mixing the boundary layer, which provides low surface area energy sites around the particles. Kinetic movement increases nucleation formation for gas phase transfer during boiling. Metal and ceramic nanoparticles in fluids increase fluid thermal conductivity. By modifying surface characteristics of such nanoparticles to promote boundary layer mixing, fluid heat transfer and thermal conductivity will increase. Specialized surface characteristics of materials ensure that particles interface with the boundary layer to produce kinetic mixing and low surface area energy sites for accelerated nucleation, resulting in enhanced heat transfer of gas or liquid.
    • 通过引入具有特殊表面的颗粒来增强边界层膜的动力学运动。 边界层是停滞的,减少了流入流体的热传递。 边界层传热主要是传导。 将特殊颗粒引入流体促进边界层混合,从而将传导转变成通过膜的对流。 本发明的颗粒在混合边界层的同时滚动,边界层在颗粒周围提供低的表面积能量位置。 动力学运动在沸腾期间增加气相转移的成核形成。 流体中的金属和陶瓷纳米颗粒增加了流体的导热性。 通过改变这种纳米颗粒的表面特征以促进边界层混合,流体传热和导热性将增加。 材料的特殊表面特性确保了颗粒与边界层的界面,以产生动力学混合和低表面积能量点,以加速成核,从而增强气体或液体的传热。
    • 3. 发明申请
    • ENHANCED BOUNDARY LAYER HEAT TRANSFER BY PARTICLE INTERACTION
    • 通过粒子交互增强边界层热传递
    • US20130140006A1
    • 2013-06-06
    • US13654369
    • 2012-10-17
    • ECOPURO, LLC
    • WILLIAM L. JOHNSON, Sr.
    • F28F7/00
    • F28F7/00B29C44/3415B29C44/3469
    • Enhanced heat transfer by kinetic movement of boundary layer film by introducing particles with specialized surfaces. A boundary layer is stagnant, reducing heat transfer into a flowing fluid. Boundary layer heat transfer is primarily conduction. The introduction of specialized particles into fluid promotes boundary layer mixing, thereby converting conduction to convection through the film. Particles of the invention tumble while mixing the boundary layer, which provides low surface area energy sites around the particles. Kinetic movement increases nucleation formation for gas phase transfer during boiling. Metal and ceramic nanoparticles in fluids increase fluid thermal conductivity. By modifying surface characteristics of such nanoparticles to promote boundary layer mixing, fluid heat transfer and thermal conductivity will increase. Specialized surface characteristics of materials ensure that particles interface with the boundary layer to produce kinetic mixing and low surface area energy sites for accelerated nucleation, resulting in enhanced heat transfer of gas or liquid.
    • 通过引入具有特殊表面的颗粒来增强边界层膜的动力学运动。 边界层是停滞的,减少了流入流体的热传递。 边界层传热主要是传导。 将特殊颗粒引入流体促进边界层混合,从而将传导转变成通过膜的对流。 本发明的颗粒在混合边界层的同时滚动,边界层在颗粒周围提供低的表面积能量位置。 动力学运动在沸腾期间增加气相转移的成核形成。 流体中的金属和陶瓷纳米颗粒增加了流体的导热性。 通过改变这种纳米颗粒的表面特征以促进边界层混合,流体传热和导热性将增加。 材料的特殊表面特性确保了颗粒与边界层的界面,以产生动力学混合和低表面积能量点,以加速成核,从而增强气体或液体的传热。
    • 4. 发明授权
    • Method of selective foaming for porous polymeric material
    • 多孔聚合材料选择性发泡方法
    • US08247464B2
    • 2012-08-21
    • US13082133
    • 2011-04-07
    • Wei LiHai WangVipin KumarThomas J. Matula
    • Wei LiHai WangVipin KumarThomas J. Matula
    • C08J9/00C08J9/12
    • C08J9/00B29C35/0261B29C44/3469
    • A selective high intensity ultrasonic foaming technique is described to fabricate porous polymers for biomedical applications. Process variables, including ultrasound power, scanning speed, and gas concentration have an affect on pore size. Pore size can be controlled with the scanning speed of the ultrasound insonation and interconnected porous structures could be obtained using a partially saturated polymers. A gas concentration range of 3-5% by weight creates interconnected open-celled porous structures. The selective high intensity ultrasonic foaming method can be used on biocompatible polymers so as not to introduce any organic solvents. The method has use in cell related biomedical applications such as studying cell growth behaviors by providing a porous environment with varying topological features.
    • 描述了选择性高强度超声波发泡技术来制造用于生物医学应用的多孔聚合物。 过程变量,包括超声波功率,扫描速度和气体浓度都会影响孔径。 可以用超声波的扫描速度控制孔径,并且可以使用部分饱和的聚合物获得互连的多孔结构。 3-5重量%的气体浓度范围产生互连的开孔多孔结构。 选择性高强度超声波发泡方法可用于生物相容性聚合物,以便不引入任何有机溶剂。 该方法可用于细胞相关的生物医学应用,例如通过提供具有不同拓扑特征的多孔环境来研究细胞生长行为。