会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Triboelectric generator
    • 摩擦发电机
    • US09178446B2
    • 2015-11-03
    • US13598132
    • 2012-08-29
    • Zhong L. WangFengru FanLong LinGuang ZhuCaofeng PanYusheng Zhou
    • Zhong L. WangFengru FanLong LinGuang ZhuCaofeng PanYusheng Zhou
    • H02N1/04
    • H02N1/04
    • A generator includes a thin first contact charging layer and a thin second contact charging layer. The thin first contact charging layer includes a first material that has a first rating on a triboelectric series. The thin first contact charging layer has a first side with a first conductive electrode applied thereto and an opposite second side. The thin second contact charging layer includes a second material that has a second rating on a triboelectric series that is more negative than the first rating. The thin first contact charging layer has a first side with a first conductive electrode applied thereto and an opposite second side. The thin second contact charging layer is disposed adjacent to the first contact charging layer so that the second side of the second contact charging layer is in contact with the second side of the first contact charging layer.
    • 发电机包括薄的第一接触充电层和薄的第二接触充电层。 薄的第一接触充电层包括在摩擦系列上具有第一额定值的第一材料。 薄的第一接触充电层具有施加到其上的第一导电电极和相对的第二侧的第一侧。 薄的第二接触充电层包括第二材料,其具有比第一额定值更负的摩擦系列的第二额定值。 薄的第一接触充电层具有施加到其上的第一导电电极和相对的第二侧的第一侧。 薄的第二接触充电层设置成与第一接触充电层相邻,使得第二接触充电层的第二面与第一接触充电层的第二面接触。
    • 2. 发明申请
    • Triboelectric Generator
    • 摩擦发电机
    • US20130049531A1
    • 2013-02-28
    • US13598132
    • 2012-08-29
    • Zhong L. WangFengru FanLong LinGuang ZhuCaofeng PanYusheng Zhou
    • Zhong L. WangFengru FanLong LinGuang ZhuCaofeng PanYusheng Zhou
    • H02N1/10
    • H02N1/04
    • A generator includes a thin first contact charging layer and a thin second contact charging layer. The thin first contact charging layer includes a first material that has a first rating on a triboelectric series. The thin first contact charging layer has a first side with a first conductive electrode applied thereto and an opposite second side. The thin second contact charging layer includes a second material that has a second rating on a triboelectric series that is more negative than the first rating. The thin first contact charging layer has a first side with a first conductive electrode applied thereto and an opposite second side. The thin second contact charging layer is disposed adjacent to the first contact charging layer so that the second side of the second contact charging layer is in contact with the second side of the first contact charging layer.
    • 发电机包括薄的第一接触充电层和薄的第二接触充电层。 薄的第一接触充电层包括在摩擦系列上具有第一额定值的第一材料。 薄的第一接触充电层具有施加到其上的第一导电电极和相对的第二侧的第一侧。 薄的第二接触充电层包括第二材料,其具有比第一额定值更负的摩擦系列的第二额定值。 薄的第一接触充电层具有施加到其上的第一导电电极和相对的第二侧的第一侧。 薄的第二接触充电层设置成与第一接触充电层相邻,使得第二接触充电层的第二面与第一接触充电层的第二面接触。
    • 5. 发明申请
    • Hybrid Nanogenerator for Harvesting Chemical and Mechanical Energy
    • 用于收获化学和机械能的混合纳米发电机
    • US20120137783A1
    • 2012-06-07
    • US13310126
    • 2011-12-02
    • Zhong L. WangCaofeng PanBen HansenYing Liu
    • Zhong L. WangCaofeng PanBen HansenYing Liu
    • G01L9/08H01L41/22H02N2/18B82Y99/00
    • B82Y30/00H01L41/113H01L41/1134H02N2/18
    • A generator includes a bio-compatible substrate onto which one mechanical generating unit is disposed. A plurality of elongated piezoelectric fibers each have a first end that is in electrical communication with a first electrode and an opposite second end that is in electrical communication with a second electrode. An insulative layer covers the first electrode, the second electrode and the elongated piezoelectric fibers. A third electrode and a fourth electrode are each disposed on the bio-compatible substrate opposite from the mechanical generating unit. A proton conducting member is in contact with both the third electrode and the fourth electrode. A glucose catalyzing enzyme is electrically coupled to the third electrode. An oxidase enzyme is electrically coupled to the fourth electrode. The third electrode is in electrical communication with each first electrode and the fourth electrode is in electrical communication with each second electrode.
    • 发生器包括生物相容性基板,一个机械发生单元设置在该生物相容基板上。 多个细长的压电纤维各自具有与第一电极电连通的第一端和与第二电极电连通的相对的第二端。 绝缘层覆盖第一电极,第二电极和细长的压电纤维。 第三电极和第四电极分别设置在与机械发生单元相对的生物相容性基板上。 质子传导部件与第三电极和第四电极接触。 葡萄糖催化酶电耦合到第三电极。 氧化酶与第四电极电耦合。 第三电极与每个第一电极电连通,并且第四电极与每个第二电极电连通。
    • 6. 发明授权
    • Hybrid nanogenerator for harvesting chemical and mechanical energy
    • 用于收集化学和机械能的混合纳米发生器
    • US08680751B2
    • 2014-03-25
    • US13310126
    • 2011-12-02
    • Zhong L. WangCaofeng PanBen HansenYing Liu
    • Zhong L. WangCaofeng PanBen HansenYing Liu
    • H02N2/18H01L27/20
    • B82Y30/00H01L41/113H01L41/1134H02N2/18
    • A generator includes a bio-compatible substrate onto which one mechanical generating unit is disposed. A plurality of elongated piezoelectric fibers each have a first end that is in electrical communication with a first electrode and an opposite second end that is in electrical communication with a second electrode. An insulative layer covers the first electrode, the second electrode and the elongated piezoelectric fibers. A third electrode and a fourth electrode are each disposed on the bio-compatible substrate opposite from the mechanical generating unit. A proton conducting member is in contact with both the third electrode and the fourth electrode. A glucose catalyzing enzyme is electrically coupled to the third electrode. An oxidase enzyme is electrically coupled to the fourth electrode. The third electrode is in electrical communication with each first electrode and the fourth electrode is in electrical communication with each second electrode.
    • 发生器包括生物相容性基板,一个机械发生单元设置在该生物相容基板上。 多个细长的压电纤维各自具有与第一电极电连通的第一端和与第二电极电连通的相对的第二端。 绝缘层覆盖第一电极,第二电极和细长的压电纤维。 第三电极和第四电极分别设置在与机械发生单元相对的生物相容性基板上。 质子传导部件与第三电极和第四电极接触。 葡萄糖催化酶电耦合到第三电极。 氧化酶与第四电极电耦合。 第三电极与每个第一电极电连通,并且第四电极与每个第二电极电连通。
    • 7. 发明申请
    • Large-Scale Lateral Nanowire Arrays Nanogenerators
    • 大型横向纳米线阵列纳米发生器
    • US20110107569A1
    • 2011-05-12
    • US12943499
    • 2010-11-10
    • Zhong L. WangChen XuYong QinGuang ZhuRusen YangYoufan HuYan Zhang
    • Zhong L. WangChen XuYong QinGuang ZhuRusen YangYoufan HuYan Zhang
    • H02N2/18
    • H01L41/316H02N2/18
    • In a method of making a generating device, a plurality of spaced apart elongated seed members are deposited onto a surface of a flexible non-conductive substrate. An elongated conductive layer is applied to a top surface and a first side of each seed member, thereby leaving an exposed second side opposite the first side. A plurality of elongated piezoelectric nanostructures is grown laterally from the second side of each seed layer. A second conductive material is deposited onto the substrate adjacent each elongated first conductive layer so as to be coupled the distal end of each of the plurality of elongated piezoelectric nanostructures. The second conductive material is selected so as to form a Schottky barrier between the second conductive material and the distal end of each of the plurality of elongated piezoelectric nanostructures and so as to form an electrical contact with the first conductive layer.
    • 在制造发生装置的方法中,多个间隔开的细长种子构件沉积在柔性非导电基底的表面上。 将细长的导电层施加到每个种子构件的顶表面和第一侧,从而留下与第一侧相对的暴露的第二侧。 多个细长的压电纳米结构从每个种子层的第二侧横向生长。 第二导电材料沉积在每个细长的第一导电层上的衬底上,以便耦合到多个细长压电纳米结构中的每一个的远端。 选择第二导电材料以在第二导电材料和多个细长压电纳米结构中的每一个的远端之间形成肖特基势垒,并且与第一导电层形成电接触。
    • 8. 发明授权
    • Large-scale lateral nanowire arrays nanogenerators
    • 大型横向纳米线阵列纳米发生器
    • US08623451B2
    • 2014-01-07
    • US12943499
    • 2010-11-10
    • Zhong L. WangChen XuYong QinGuang ZhuRusen YangYoufan HuYan Zhang
    • Zhong L. WangChen XuYong QinGuang ZhuRusen YangYoufan HuYan Zhang
    • B05D5/12H01L41/22H01L41/00H04R17/00H02N2/00
    • H01L41/316H02N2/18
    • In a method of making a generating device, a plurality of spaced apart elongated seed members are deposited onto a surface of a flexible non-conductive substrate. An elongated conductive layer is applied to a top surface and a first side of each seed member, thereby leaving an exposed second side opposite the first side. A plurality of elongated piezoelectric nanostructures is grown laterally from the second side of each seed layer. A second conductive material is deposited onto the substrate adjacent each elongated first conductive layer so as to be coupled the distal end of each of the plurality of elongated piezoelectric nanostructures. The second conductive material is selected so as to form a Schottky barrier between the second conductive material and the distal end of each of the plurality of elongated piezoelectric nanostructures and so as to form an electrical contact with the first conductive layer.
    • 在制造发生装置的方法中,多个间隔开的细长种子构件沉积在柔性非导电基底的表面上。 将细长的导电层施加到每个种子构件的顶表面和第一侧,从而留下与第一侧相对的暴露的第二侧。 多个细长的压电纳米结构从每个种子层的第二侧横向生长。 第二导电材料沉积在每个细长的第一导电层上的衬底上,以便耦合到多个细长压电纳米结构中的每一个的远端。 选择第二导电材料以在第二导电材料和多个细长压电纳米结构中的每一个的远端之间形成肖特基势垒,并且与第一导电层形成电接触。
    • 10. 发明授权
    • Method and system for dynamic loop transfer by populating split variables
    • 通过填充分割变量进行动态循环传输的方法和系统
    • US08276131B2
    • 2012-09-25
    • US11847451
    • 2007-08-30
    • Kevin J. LangmanZhong L. Wang
    • Kevin J. LangmanZhong L. Wang
    • G06F9/45
    • G06F8/443G06F9/45516
    • A method that provides for dynamic loop transfer for a method having a first set of instructions being executed by an interpreter is provided. An execution stack includes slots for storing a value of each local variable known to each subroutine while the subroutine is active. The method comprises suspending execution at a point for which a current execution state can be captured from the execution stack; assigning the value in each slot of the execution stack to a corresponding slot of an array of values; scanning the first set of instructions to identify a data type for local variable that is not known in the current execution state and shares a slot in the execution stack with a local variable that is known; and generating a second set of instructions for the method coded to be initially executed to declare each local variable that is known in the current execution state and each local variable for which a data type was identified, assign each declared variable with the value assigned to the slot in the array that corresponds to the slot of the execution stack in which the value of the variable is stored during execution of the first set of instructions, and branch to a target point in the second set of instructions that corresponds to the point at which execution was suspended.
    • 提供了一种提供用于由解释器执行的具有第一组指令的方法的动态循环传送的方法。 执行堆栈包括用于存储每个子程序已知的每个局部变量的值的插槽,同时子程序处于活动状态。 该方法包括:在执行堆栈中可捕获当前执行状态的点处暂停执行; 将执行堆栈的每个时隙中的值分配给值阵列的相应时隙; 扫描第一组指令以识别在当前执行状态中不知道的局部变量的数据类型,并且与已知的局部变量共享执行堆栈中的时隙; 以及生成用于所述方法编码的第二组指令以最初执行以声明在当前执行状态中已知的每个局部变量以及识别了数据类型的每个局部变量,为每个已声明的变量赋予分配给 对应于执行堆栈的槽的数组中的槽,其中在执行第一组指令期间存储变量的值,并且分支到与第二组指令对应的第二组指令中的目标点, 执行暂停。