会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 8. 发明授权
    • Double diffused mosfet with potential biases
    • 双重扩散的mosfet与潜在的偏见
    • US4884116A
    • 1989-11-28
    • US132032
    • 1987-12-14
    • Koji Shirai
    • Koji Shirai
    • H01L21/322H01L21/336H01L21/762H01L27/06H01L29/78H01L29/786
    • H01L29/7824H01L21/3226H01L21/76251H01L27/0688H01L29/78612H01L29/78624H01L29/78654H01L2924/0002
    • First and second single crystal silicon substrates are integrated, by means of a thermal treatment, with first and second silicon oxide films formed on surfaces of said respective first and second single crystal silicon substrates in contact with eacth other. More specifically, an insulating region is formed by integrating first and second silicon oxide films formed on the first and second single crystal silicon substrates. First and second semiconductor regions constituted by the first and second single crystal silicon substrates are electrically isolated by the insulating region. As a result, it is possible to reduce the width of the depletion layer generated in the second semiconductor region by the influence of the first semiconductor region in which an element is formed. A back gate region formed in the second semiconductor region and the first semiconductor region, in which an element is not formed, are held substantially at an equal potential. In this way, it is possible to improve the yield voltage characteristics between the first semiconductor region, which does not form any element, and the back gate region. The insulating region which electrically isolates the first and second semiconductor regions from each other, is formed by bonding together first and second silicon oxide films on surface of the first and second single crystal silicon substrates. Therefore, the process of manufacture is simplified.
    • 通过热处理将第一和第二单晶硅衬底与形成在所述相应的第一和第二单晶硅衬底的表面上的第一和第二氧化硅膜彼此接触。 更具体地,通过集成形成在第一和第二单晶硅衬底上的第一和第二氧化硅膜形成绝缘区域。 由第一和第二单晶硅衬底构成的第一和第二半导体区域被绝缘区域电隔离。 结果,可以通过形成元件的第一半导体区域的影响来减小在第二半导体区域中产生的耗尽层的宽度。 形成在第二半导体区域中的背栅极区域和不形成元件的第一半导体区域基本保持相等的电位。 以这种方式,可以提高不形成任何元件的第一半导体区域与后栅极区域之间的屈服电压特性。 通过将第一和第二单晶硅基板的表面上的第一和第二氧化硅膜接合在一起,形成将第一和第二半导体区域彼此电隔离的绝缘区域。 因此,简化了制造过程。
    • 9. 发明授权
    • Semiconductor device IC with DMOS using self-aligned back gate region
    • 具有DMOS的半导体器件IC采用自对准背栅区
    • US4878096A
    • 1989-10-31
    • US27406
    • 1987-03-18
    • Koji ShiraiKen Kawamura
    • Koji ShiraiKen Kawamura
    • H01L21/336H01L21/761H01L21/8234H01L21/8238H01L27/088H01L27/092H01L29/78
    • H01L21/823462H01L21/761H01L21/823857H01L27/0922H01L27/088Y10S148/031Y10S148/082
    • In a semiconductor device according to the present invention, a pair of element regions of a second conductivity type are formed so as to be electrically isolated from each other on a semiconductor substrate of a first conductivity type, a complementary MOS transistor is formed in one of the element regions of the second conductivity type, and a double-diffused MOS transistor is formed in the other element region of the second conductivity type. The complementary MOS transistor is of a surface channel type in which N- and P-channel MOS transistors are respectively formed in a pair of well diffusion layers of the first and second conductivity types formed in the element region of the second conductivity type, and conductivity types of the respective gate electrodes of the N- and P-channel MOS transistors are different from those of the respective well diffusion layers. The double-diffused MOS transistor is of a surface channel type in which a back gate region is formed so as to be self-aligned with the gate electrode and the conductivity type of the gate electrode is different from that of the well diffusion layer.
    • 在根据本发明的半导体器件中,一对第二导电类型的元件区域形成为在第一导电类型的半导体衬底上彼此电隔离,互补MOS晶体管形成为 第二导电类型的元件区域和双扩散MOS晶体管形成在第二导电类型的另一元件区域中。 互补MOS晶体管是表面沟道型,其中N沟道MOS晶体管和P沟道MOS晶体管分别形成在形成在第二导电类型的元件区域中的第一和第二导电类型的一对阱扩散层中,并且导电性 N沟道MOS晶体管和P沟道MOS晶体管的各个栅极的类型与各个阱扩散层的不同。 双扩散MOS晶体管是表面沟道型,其中形成背栅区以与栅电极自对准,并且栅电极的导电类型不同于阱扩散层的导电类型。
    • 10. 发明申请
    • SEMICONDUCTOR DEVICE
    • 半导体器件
    • US20120139005A1
    • 2012-06-07
    • US13053123
    • 2011-03-21
    • Takehito IKIMURARieko AkimotoKiminori WatanabeKoji ShiraiYasushi Fukai
    • Takehito IKIMURARieko AkimotoKiminori WatanabeKoji ShiraiYasushi Fukai
    • H01L29/739
    • H01L29/7322H01L27/0623H01L29/0653H01L29/0878H01L29/7816
    • According to one embodiment, a semiconductor device includes a p-type semiconductor layer, an n-type source region, an insulator, an n-type semiconductor region, an n-type drain region, a p-type channel region, a gate insulating film, a gate electrode, a source electrode, a drain electrode, and an electrode. The source region is provided on a surface of the p-type semiconductor layer. The insulator is provided in a trench formed extending in a thickness direction of the p-type semiconductor layer from the surface of the p-type semiconductor layer. The n-type semiconductor region is provided on the surface of the p-type semiconductor layer between the source region and the insulator. The drain region is provided on the surface of the p-type semiconductor layer between the source region and the n-type semiconductor region and separated from the source region and the n-type semiconductor region. The channel region is provided on the surface of the p-type semiconductor layer between the source region and the drain region and adjacent to the source region and the drain region. The gate insulating film is provided on the channel region. The gate electrode is provided on the gate insulating film. The source electrode is connected to the source region. The drain electrode is connected to the drain region. The electrode is connected to the n-type semiconductor region.
    • 根据一个实施例,半导体器件包括p型半导体层,n型源极区,绝缘体,n型半导体区,n型漏极区,p型沟道区,栅极绝缘 膜,栅电极,源电极,漏电极和电极。 源区域设置在p型半导体层的表面上。 绝缘体设置在从p型半导体层的表面沿着p型半导体层的厚度方向延伸的沟槽中。 n型半导体区域设置在源极区域和绝缘体之间的p型半导体层的表面上。 漏极区域设置在源极区域和n型半导体区域之间的p型半导体层的表面上,并与源极区域和n型半导体区域分离。 沟道区域设置在源极区域和漏极区域之间并且与源极区域和漏极区域相邻的p型半导体层的表面上。 栅极绝缘膜设置在沟道区域上。 栅电极设置在栅极绝缘膜上。 源电极连接到源极区域。 漏电极连接到漏区。 电极连接到n型半导体区域。