会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Method for calculating probe mounting position in on-machine measuring device
    • 在机器测量装置上计算探头安装位置的方法
    • US08554502B2
    • 2013-10-08
    • US13026215
    • 2011-02-12
    • Yonpyo HonKenzo EbiharaMasayuki Hamura
    • Yonpyo HonKenzo EbiharaMasayuki Hamura
    • G06F19/00
    • G01B5/008G01B7/008G01B21/045
    • A measurement program is created for measurement performed by moving X- and Z-axes so that a central axis of a probe is perpendicular to the surface of a reference sphere, and errors are obtained between original probe position data and probe position data obtained by measurement performed at two different angles θ1 and θ2 of a rotary axis according to the created measurement program. Position coordinates of a tip end of the probe at the two different angles θ1 and θ2 of the rotary axis are corrected so that the errors are zero. Then, the X- and Z-axis coordinates are corrected based on a positive or negative phased shift amount, and measurement errors are obtained by calculation. A real probe tip position is defined by the X- and Z-axis coordinates corrected by a correction amount with which the obtained measurement errors become minimum.
    • 创建测量程序,用于通过移动X轴和Z轴进行测量,使得探头的中心轴垂直于参考球的表面,并且在原始探针位置数据和通过测量获得的探针位置数据之间获得误差 根据创建的测量程序在旋转轴的两个不同角度θ1和θ2处执行。 校正旋转轴的两个不同角度θ1和θ2处的探头末端的位置坐标,使得误差为零。 然后,基于正或负相位移位量来校正X轴和Z轴坐标,并且通过计算获得测量误差。 真正的探针尖端位置由通过所获得的测量误差变为最小的校正量校正的X轴和Z轴坐标限定。
    • 7. 发明授权
    • Contact type measuring instrument
    • 接触式测量仪器
    • US07797850B2
    • 2010-09-21
    • US12335688
    • 2008-12-16
    • Yonpyo HonKenzo EbiharaAkira YamamotoMasayuki Hamura
    • Yonpyo HonKenzo EbiharaAkira YamamotoMasayuki Hamura
    • G01B7/00
    • G01B5/012G01B7/012
    • There is provided a contact type measuring instrument in which the contact force of a probe is adjusted by a force created by compressed air and an attraction force between a permanent magnet and a magnetic body. This measuring instrument gives a pulling-in force or a pushing-out force to the probe by controlling a fluid pressure in a probe body. Also, between the permanent magnet attached to the tip end of a movable part of a micrometer attached to the probe body and a plate-shaped member attached to the end part on the side opposite to a contact of the probe, an attraction force according to a distance between the permanent magnet and the plate-shaped member is created.
    • 提供一种接触式测量仪器,其中通过由压缩空气产生的力和永磁体与磁体之间的吸引力来调节探针的接触力。 该测量仪器通过控制探头主体中的流体压力而向探头提供拉入力或推出力。 此外,在附着到安装在探针主体上的测微计的可动部的前端的永磁体与安装在与探针的接触面相反的一侧的端部的板状构件之间,具有根据 产生永磁体和板状构件之间的距离。
    • 9. 发明授权
    • Fluid bearing structure and method of forming bearing concaves in fluid bearing structure
    • 流体轴承结构和在轴承结构中形成轴承凹陷的方法
    • US08277123B2
    • 2012-10-02
    • US12561610
    • 2009-09-17
    • Masayuki HamuraKenzo EbiharaTakeshi Ooki
    • Masayuki HamuraKenzo EbiharaTakeshi Ooki
    • F16C32/06B21D53/10
    • F16C32/0696C25D11/04F16C29/025F16C32/0614F16C2204/20Y10T29/49639
    • A fluid bearing structure with uniform depths of bearing concaves and a method of forming the bearing concaves in the fluid bearing structure. Pipe parts are inserted into through holes formed in the bearing base to form fluid spout holes for spouting fluid between confronting bearing surfaces. Bearing concaves are formed around the fluid spout holes. The bearing base and the pipe parts are made of different materials. A coating layer is formed on the bearing base and the pipe parts by an anodic oxidation process. Thickness of the coating layer on the bearing base is different from thickness of the coating layer on the pipe parts since the base member and the pipe members are made of different materials. The material on which a coating layer grows quickly is selected for the bearing base and the material on which a coating layer grows slowly is selected for the pipe parts.
    • 具有均匀深度的轴承凹陷的流体轴承结构和在流体轴承结构中形成轴承凹部的方法。 将管件插入到形成在轴承座中的通孔中,以形成用于在相对的轴承表面之间喷射流体的流体喷口。 轴承凹陷形成在流体喷口周围。 轴承座和管件由不同的材料制成。 通过阳极氧化工艺在轴承座和管件上形成涂层。 由于基部件和管件由不同的材料制成,所以在轴承座上的涂层厚度与管件上的涂层厚度不同。 对于轴承座选择涂层快速生长的材料,并且为管件选择涂层缓慢生长的材料。