会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Nanocomposite, nanocomposite electrolyte membrane including the same and fuel cell including the nanocomposite electrolyte membrane
    • 纳米复合材料,包括其的纳米复合电解质膜和包括纳米复合电解质膜的燃料电池
    • US07842430B2
    • 2010-11-30
    • US11847036
    • 2007-08-29
    • Yeong-suk ChoiSang-hoon Joo
    • Yeong-suk ChoiSang-hoon Joo
    • H01M2/00
    • H01M8/1011B82Y30/00H01M8/04197H01M8/1016H01M2300/0065H01M2300/0088Y02E60/523Y10S977/745
    • A nanocomposite includes metal-carbon nanotubes and a sulfonated polysulfone. In the nanocomposite, the sulfonated polysulfone and the metal-carbon nanotubes have strong attraction therebetween due to π-π interactions or van der Waals interactions, and thus the nanocomposite has excellent ionic conductivity and mechanical properties. In addition, the nanocomposite includes a metal that can be used as a catalyst for an anode, and thus the reduction in power generation caused by methanol crossover can be minimized. Therefore, a nanocomposite electrolyte membrane prepared using the nanocomposite can minimize the reduction in power generation caused by the crossover of a polar organic fuel such as methanol. In a fuel cell employing the nanocomposite electrolyte membrane, when an aqueous methanol solution is used as a fuel, crossover of the methanol is more suppressed, and accordingly, the fuel cell has an improved operating efficiency and a longer lifetime.
    • 纳米复合材料包括金属 - 碳纳米管和磺化聚砜。 在纳米复合材料中,磺化聚砜和金属 - 碳纳米管之间具有很强的吸引力,由于&pgr; 相互作用或范德华相互作用,因此纳米复合材料具有优异的离子导电性和机械性能。 此外,纳米复合材料包括可用作阳极催化剂的金属,因此可以将由甲醇交叉引起的发电减少最小化。 因此,使用纳米复合材料制备的纳米复合电解质膜可以最小化由极性有机燃料如甲醇的交叉引起的发电减少。 在使用纳米复合电解质膜的燃料电池中,当使用甲醇水溶液作为燃料时,甲醇的交叉被更多地抑制,因此燃料电池具有提高的运行效率和更长的寿命。
    • 2. 发明申请
    • NANOCOMPOSITE, NANOCOMPOSITE ELECTROLYTE MEMBRANE INCLUDING THE SAME AND FUEL CELL INCLUDING THE NANOCOMPOSITE ELECTROLYTE MEMBRANE
    • 纳米复合材料,纳米复合膜电解质膜及其包括纳米复合电解质膜的燃料电池
    • US20080220309A1
    • 2008-09-11
    • US11847036
    • 2007-08-29
    • Yeong-Suk ChoiSang-hoon Joo
    • Yeong-Suk ChoiSang-hoon Joo
    • H01M8/10C08K3/10B82B1/00
    • H01M8/1011B82Y30/00H01M8/04197H01M8/1016H01M2300/0065H01M2300/0088Y02E60/523Y10S977/745
    • A nanocomposite includes metal-carbon nanotubes and a sulfonated polysulfone. In the nanocomposite, the sulfonated polysulfone and the metal-carbon nanotubes have strong attraction therebetween due to π-π interactions or van der Waals interactions, and thus the nanocomposite has excellent ionic conductivity and mechanical properties. In addition, the nanocomposite includes a metal that can be used as a catalyst for an anode, and thus the reduction in power generation caused by methanol crossover can be minimized. Therefore, a nanocomposite electrolyte membrane prepared using the nanocomposite can minimize the reduction in power generation caused by the crossover of a polar organic fuel such as methanol. In a fuel cell employing the nanocomposite electrolyte membrane, when an aqueous methanol solution is used as a fuel, crossover of the methanol is more suppressed, and accordingly, the fuel cell has an improved operating efficiency and a longer lifetime.
    • 纳米复合材料包括金属 - 碳纳米管和磺化聚砜。 在纳米复合材料中,由于pi-pi相互作用或范德华相互作用,磺化聚砜和金属 - 碳纳米管之间具有很强的吸引力,因此纳米复合材料具有优异的离子导电性和机械性能。 此外,纳米复合材料包括可用作阳极催化剂的金属,因此可以将由甲醇交叉引起的发电减少最小化。 因此,使用纳米复合材料制备的纳米复合电解质膜可以最小化由极性有机燃料如甲醇的交叉引起的发电减少。 在使用纳米复合电解质膜的燃料电池中,当使用甲醇水溶液作为燃料时,甲醇的交叉被更多地抑制,因此燃料电池具有提高的运行效率和更长的寿命。
    • 3. 发明申请
    • Mesoporous carbon composite, method of preparing the same, and fuel cell using the mesoporous carbon composite
    • 介孔碳复合材料,其制备方法和使用介孔碳复合材料的燃料电池
    • US20070042268A1
    • 2007-02-22
    • US11443165
    • 2006-05-31
    • Chan-ho PakYeong-suk ChoiHyuk ChangSang-hoon Joo
    • Chan-ho PakYeong-suk ChoiHyuk ChangSang-hoon Joo
    • H01M4/60H01M4/62B01J31/00B01J21/18
    • B01J21/18B01J23/42B01J29/0308B01J35/10B01J35/1023B01J35/1047B01J35/1061B01J37/0018B01J37/084H01M4/90H01M4/9083H01M4/926H01M8/08H01M8/086H01M8/10H01M8/1007H01M8/1011Y02E60/523Y02P70/56
    • A mesoporous carbon composite includes mesoporous carbon having mesopores; a conductive polymer coated on only an outer surface of the mesoporous carbon; and an organic electrolyte comprising a lithium salt and an organic solvent. The mesoporous carbon composite may be prepared by impregnating an ordered mesoporous silica (OMS) with a carbon precursor mixture comprising a carbon precursor, an acid, and a solvent; heat-treating and carbonizing the impregnated OMS to form an OMS-carbon composite; mixing the OMS-carbon composite with a monomer that forms a conductive polymer and a solvent to provide a surface of the OMS-carbon composite with the monomer that forms a conductive polymer; polymerizing the monomer to obtain a conductive polymer-coated OMS-carbon composite; removing the OMS from the conductive polymer-coated OMS-carbon composite to obtain a conductive polymer-coated mesoporous carbon; and doping the conductive polymer-coated mesoporous carbon with an organic electrolyte comprising a lithium salt and an organic solvent to form the mesoporous carbon composite. A supported catalyst contains the mesoporous carbon composite, and a fuel cell uses an electrode containing the mesoporous carbon composite.
    • 介孔碳复合材料包括具有中孔的中孔碳; 只涂覆在介孔碳外表面上的导电聚合物; 以及包含锂盐和有机溶剂的有机电解质。 介孔碳复合材料可以通过用含碳前体,酸和溶剂的碳前体混合物浸渍有序介孔二氧化硅(OMS)来制备; 对浸渍的OMS进行热处理和碳化以形成OMS-碳复合材料; 将OMS-碳复合物与形成导电聚合物和溶剂的单体混合以提供OMS-碳复合材料与形成导电聚合物的单体的表面; 聚合单体以获得导电聚合物涂覆的OMS-碳复合材料; 从导电聚合物涂覆的OMS-碳复合材料中除去OMS以获得导电聚合物涂覆的介孔碳; 并用包含锂盐和有机溶剂的有机电解质掺杂导电聚合物涂覆的介孔碳以形成中孔碳复合物。 载体催化剂含有介孔碳复合材料,燃料电池使用含有介孔碳复合材料的电极。
    • 6. 发明授权
    • Duty control circuit and semiconductor device having the same
    • 占空比控制电路和具有相同功能的半导体器件
    • US07994835B2
    • 2011-08-09
    • US12585680
    • 2009-09-22
    • Kwan-yeob ChaeSu-ho KimWon LeeSang-hoon JooDharmendra PanditJong-ryun Choi
    • Kwan-yeob ChaeSu-ho KimWon LeeSang-hoon JooDharmendra PanditJong-ryun Choi
    • H03K3/017
    • H03K5/1565H03K2005/00058
    • A duty control circuit including a clock input unit connected to a first node and a second node, the clock input unit receiving an input clock signal through the first node and changing a voltage of the second node to one of a first voltage level and a second voltage level in response to respective low and high logic levels of the input clock signal, a slew controller connected to the second node, the slew controller including one or more switches controlled by respective control signals, the one or more switches providing one of the first voltage level and the second voltage level to the second node in response to the control signals such that a slew rate of a signal at the second node is varied, and a clock output unit, the clock output unit outputting an output clock signal having a duty that varies.
    • 一种占空比控制电路,包括连接到第一节点和第二节点的时钟输入单元,时钟输入单元通过第一节点接收输入时钟信号,并将第二节点的电压改变为第一电压电平和第二节点之一 响应于输入时钟信号的相应低和高逻辑电平的电压电平,连接到第二节点的转换控制器,所述转换控制器包括由相应控制信号控制的一个或多个开关,所述一个或多个开关提供第一 电压电平和第二电压电平响应于控制信号,使得第二节点处的信号的转换速率改变;以及时钟输出单元,时钟输出单元输出具有占空比的输出时钟信号 不一样。
    • 8. 发明申请
    • Supported catalyst, method of preparing the same, and fuel cell using the same
    • 负载催化剂,其制备方法和使用其的燃料电池
    • US20070270305A1
    • 2007-11-22
    • US11708600
    • 2007-02-21
    • Chan-ho PakDae-jong YooSang-hoon JooHyuk ChangSeol-ah Lee
    • Chan-ho PakDae-jong YooSang-hoon JooHyuk ChangSeol-ah Lee
    • B01J31/00
    • H01M4/926H01M4/8657H01M4/8814H01M4/885H01M4/92H01M4/921H01M8/1007H01M8/1011Y02E60/523Y02P70/56
    • A method of preparing a supported catalyst, the method comprising mixing a first catalytic metal precursor and a first solvent to obtain a first catalytic metal precursor mixture; mixing a carbon support for catalyst and the first catalytic metal precursor mixture, and drying the mixture to obtain a primary supported catalyst precursor; subjecting the primary supported catalyst precursor to a hydrogen reduction heat treatment, to obtain a primary supported catalyst; mixing the primary supported catalyst and a polyhydric alcohol to obtain a primary supported catalyst mixture; mixing a second catalytic metal precursor and a second solvent to obtain a second catalytic metal precursor mixture; mixing the primary supported catalyst mixture and the second catalytic metal precursor mixture to obtain a secondary supported catalyst precursor mixture; and adjusting the pH of the secondary supported catalyst precursor mixture, and then heating the secondary supported catalyst precursor mixture to obtain a supported catalyst, a supported catalyst prepared by the method, an electrode comprising the supported catalyst, and a fuel cell including the electrode are provided. A supported catalyst having a desired amount of loaded catalytic metal particles can be obtained by preparing a primary supported catalyst containing catalytic metal particles that are obtained by a primary gas phase reduction reaction of a portion of the final loading amount of catalytic metal, and reducing the remaining portion of the catalytic metal by a secondary liquid phase reduction reaction. The supported catalyst contains catalytic metal particles having a very small average particle size, which are uniformly distributed on a carbon support at a high concentration, and thus exhibits maximal catalyst activity. A fuel cell produced using the supported catalyst has improved efficiency.
    • 一种制备负载型催化剂的方法,所述方法包括混合第一催化金属前体和第一溶剂以获得第一催化金属前体混合物; 混合催化剂用碳载体和第一催化金属前体混合物,干燥混合物得到主要负载型催化剂前体; 对初级负载催化剂前体进行氢还原热处理,得到主要负载型催化剂; 将主要负载型催化剂和多元醇混合,得到主要负载型催化剂混合物; 混合第二催化金属前体和第二溶剂以获得第二催化金属前体混合物; 将主要负载的催化剂混合物和第二催化金属前体混合物混合,得到二次负载催化剂前体混合物; 调节二次负载型催化剂前体混合物的pH,然后加热二次负载型催化剂前体混合物,得到负载型催化剂,通过该方法制备的负载催化剂,包含负载型催化剂的电极和包含该电极的燃料电池 提供。 具有所需量的负载的催化金属颗粒的负载型催化剂可以通过制备含有催化金属颗粒的主负载催化剂获得,所述催化金属颗粒是通过催化金属的最终负载量的一部分一次气相还原反应获得的, 催化金属的剩余部分通过二次液相还原反应。 载体催化剂含有平均粒径非常小的催化金属颗粒,其以高浓度均匀分布在碳载体上,因此表现出最大的催化剂活性。 使用负载型催化剂制造的燃料电池具有提高的效率。