会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Dry cleaning of semiconductor processing chambers
    • 半导体处理室的干洗
    • US5685916A
    • 1997-11-11
    • US499157
    • 1995-07-07
    • Yan YeCharles Steven RhoadesGerald Z. Yin
    • Yan YeCharles Steven RhoadesGerald Z. Yin
    • C23C14/00B08B7/00C23C16/44H01L21/00H01L21/302H01L21/304H01L21/306H01L21/3065
    • H01L21/02046B08B7/0035C23C16/4405H01L21/67028H01L21/67034Y10S438/905
    • In accordance with the present invention, the plasma dry cleaning rate of semiconductor process chamber walls can be improved by placing a non-gaseous dry cleaning enhancement material in the position which was occupied by the workpiece during semiconductor processing. The non-gaseous dry cleaning enhancement material is either capable of generating dry cleaning reactive species and/or of reducing the consumption of the dry cleaning reactive species generated from the plasma gas feed to the process chamber. When process chamber non-volatile contaminant deposits are removed from plasma process chamber surfaces during plasma dry cleaning by placing a non-gaseous source of reactive-species-generating material within the plasma process chamber, the non-gaseous source of reactive-species-generating material need not be loacted upon or adjacent the workpiece support platform: however, this location provides excellent cleaning results in typical process chamber designs.
    • 根据本发明,可以通过在半导体加工期间将非气态干洗增强材料放置在被工件占据的位置来改善半导体处理室壁的等离子体干洗率。 非气态干洗增强材料能够产生干洗反应物质和/或降低从等离子体气体进料到处理室产生的干洗反应物质的消耗。 当在等离子体干洗期间通过将等离子体处理室内的非气态反应性物质产生材料源放置在等离子体处理室表面中来处理室非挥发性污染物沉积物时,产生非反应性物质的非气态源 材料不需要在工件支撑平台上或邻近工件支撑平台上进行:然而,该位置在典型的工艺室设计中提供了极好的清洁效果。
    • 4. 发明授权
    • Plasma dry cleaning of semiconductor processing chambers
    • 半导体处理室的等离子体干洗
    • US5486235A
    • 1996-01-23
    • US104318
    • 1993-08-09
    • Yan YeCharles S. RhoadesGerald Z. Yin
    • Yan YeCharles S. RhoadesGerald Z. Yin
    • C23C14/00B08B7/00C23C16/44H01L21/00H01L21/302H01L21/304H01L21/306H01L21/3065
    • H01L21/02046B08B7/0035C23C16/4405H01L21/67028H01L21/67034Y10S438/905
    • The plasma dry cleaning rate of semiconductor process chamber walls can be improved by placing a non-gaseous dry cleaning enhancement material in the position which was occupied by the workpiece during semiconductor processing. The non-gaseous dry cleaning enhancement material is either capable of generating dry cleaning reactive species and/or of reducing the consumption of the dry cleaning reactive species generated from the plasma gas feed to the process chamber.When process chamber non-volatile contaminant deposits are removed from plasma process chamber surfaces during plasma dry cleaning by placing a non-gaseous source of reactive-species-generating material within the plasma process chamber, the non-gaseous source of reactive-species-generating material need not be located upon or adjacent the workpiece support platform: however, this location provides excellent cleaning results in typical process chamber designs.
    • 通过在半导体处理期间将非气态干洗增强材料置于被工件占据的位置,可以改善半导体处理室壁的等离子体干洗率。 非气态干洗增强材料能够产生干洗反应物质和/或降低从等离子体气体进料到处理室产生的干洗反应物质的消耗。 当在等离子体干洗期间通过将等离子体处理室内的非气态反应性物质产生材料源放置在等离子体处理室表面中来处理室非挥发性污染物沉积物时,产生非反应性物质的非气态源 材料不必位于工件支撑平台上或邻近工件支撑平台:然而,该位置在典型的工艺室设计中提供了极好的清洁效果。
    • 5. 发明授权
    • Method manifesting a wide process window and using hexafluoropropane or
other hydrofluoropropanes to selectively etch oxide
    • 表现出广泛的工艺窗口并使用六氟丙烷或其他氢氟丙烷来选择性地蚀刻氧化物的方法
    • US6074959A
    • 2000-06-13
    • US964504
    • 1997-11-05
    • Ruiping WangGerald Z. YinRobert W. WuJian Ding
    • Ruiping WangGerald Z. YinRobert W. WuJian Ding
    • H01L21/311H01L21/302
    • H01L21/31116
    • A plasma etch process, particularly applicable to a self-aligned contact etch or other advanced structures requiring high-selectivity to nitride or other non-oxide materials and no etch stop. The process is preferably performed in a high-density plasma reactor for etching holes with either high or low aspect rations. In this process, hexafluoropropane (C.sub.3 H.sub.2 F.sub.6) is the principal etching gas in the presence of a substantial amount of an inactive gas such as argon. The process can also be used with the closely related gases heptafluoropropane (C.sub.3 HF.sub.7) and pentafluoropropane (C.sub.3 H.sub.3 F.sub.5). The process may use one or more of the these gases in proportions to optimize selectivity over other materials without the occurrence of etch stop in narrow contact holes and with a wide process window. Difluoromethane (CH.sub.2 F.sub.2) or other fluorocarbons may be combined with the above gases for optimum selectivity for a design of a specific contact feature.
    • 等离子体蚀刻工艺,特别适用于需要对氮化物或其他非氧化物材料进行高选择性且无蚀刻停止的自对准接触蚀刻或其他高级结构。 该方法优选在高密度等离子体反应器中进行,用于蚀刻具有高或低纵横比的孔。 在该方法中,六氟丙烷(C 3 H 2 F 6)是在大量惰性气体如氩气存在下的主蚀刻气体。 该方法也可与紧密相关的气体七氟丙烷(C 3 H F 7)和五氟丙烷(C 3 H 3 F 5)一起使用。 该方法可以使用一种或多种这些气体的比例来优化比其它材料的选择性,而不会在狭窄的接触孔中和在宽的工艺窗口中发生蚀刻停止。 二氟甲烷(CH 2 F 2)或其它碳氟化合物可与上述气体组合,以获得特定接触特征设计的最佳选择性。
    • 6. 发明授权
    • Inductively enhanced reactive ion etching
    • 电感增强反应离子蚀刻
    • US5607542A
    • 1997-03-04
    • US333004
    • 1994-11-01
    • Robert WuGerald Z. Yin
    • Robert WuGerald Z. Yin
    • H05H1/46C23F4/00H01J37/32H01L21/302H01L21/3065
    • H01J37/32091H01J37/321
    • A method and apparatus for generating a medium density plasma in a reactive ion etching chamber. A conventional reactive ion etching technique, using multiple electrodes for capacitive coupling of power into the chamber to establish and sustain a plasma, is combined with inductive coupling for plasma enhancement only. A first source of high frequency power is coupled to at least one of the electrodes to generate the plasma under conditions similar to those used in a conventional reactive ion etching system, and a second source of high frequency power is coupled to an inductive coil surrounding the plasma, to enhance the plasma density without adversely affecting wafers being processed in the chamber.
    • 一种用于在反应离子蚀刻室中产生中密度等离子体的方法和装置。 常规的反应离子蚀刻技术与仅用于等离子体增强的感应耦合组合使用多个电极用于将功率电容耦合到腔室中以建立和维持等离子体。 高频功率的第一源耦合到至少一个电极,以在与常规的反应离子蚀刻系统中使用的那些类似的条件下产生等离子体,并且第二高频功率源耦合到围绕 等离子体,以增强等离子体密度,而不会不利地影响在腔室中处理的晶片。
    • 8. 发明授权
    • Oxide etch process using hexafluorobutadiene and related unsaturated hydrofluorocarbons
    • 使用六氟丁二烯和相关不饱和氢氟烃的氧化物蚀刻工艺
    • US06174451B1
    • 2001-01-16
    • US09193056
    • 1998-11-16
    • Raymond HungJoseph P. CaulfieldHongching ShanRuiping WangGerald Z. Yin
    • Raymond HungJoseph P. CaulfieldHongching ShanRuiping WangGerald Z. Yin
    • H01L2131
    • H01L21/31116
    • An oxide etching process, particular useful for selectively etching oxide over a feature having a non-oxide composition, such as silicon nitride and especially when that feature has a corner that is prone to faceting during the oxide etch. The invention uses one of three unsaturated 3- and 4-carbon fluorocarbons, specifically hexafluorobutadiene (C4F6), pentafluoropropylene (C3HF5), and trifluoropropyne (C3HF3), all of which have boiling points below 10° C. and are commercially available. The unsaturated hydrofluorocarbon together with argon is excited into a high-density plasma in a reactor which inductively couples plasma source power into the chamber and RF biases the pedestal electrode supporting the wafer. Preferably, a two-step etch is used process is used in which the above etching gas is used in the main step to provide a good vertical profile and a more strongly polymerizing fluorocarbon such as difluoromethane (CH2F2) is added in the over etch to protect the nitride corner.
    • 一种氧化物蚀刻工艺,特别用于在具有非氧化物组成的特征(例如氮化硅)上选择性地蚀刻氧化物,特别是当该特征具有在氧化物蚀刻期间易于刻面的拐角时。 本发明使用沸点低于10℃的三种不饱和3-和4-碳碳氟化合物,特别是六氟丁二烯(C 4 F 6),五氟丙烯(C 3 HF 5)和三氟丙炔(C 3 H 3 F 3)中的一种,并且可商购。 将不饱和氢氟烃与氩一起激发成反应器中的高密度等离子体,其将等离子体源功率感应耦合到室中,并且RF偏置支撑晶片的基座电极。 优选地,使用两步蚀刻方法,其中在主要步骤中使用上述蚀刻气体以提供良好的垂直分布,并且在过蚀刻中加入更强的聚合碳氟化合物如二氟甲烷(CH 2 F 2)以保护 氮化物角。
    • 9. 发明授权
    • Ion energy analyzer with an electrically controlled geometric filter
    • 离子能量分析仪带有电控几何滤镜
    • US5565681A
    • 1996-10-15
    • US409389
    • 1995-03-23
    • Peter LoewenhardtGerald Z. Yin
    • Peter LoewenhardtGerald Z. Yin
    • H05H1/00H01J37/05H01L21/302H01L21/3065H01J49/48
    • H01J37/32935H01J37/05H01J2237/053H01J2237/057
    • An ion energy analyzer having a micro-channel plate where the geometric filtering characteristics of the micro-channel plate are electrically controlled. The ion energy analyzer contains a metallic collector, a control grid and a micro-channel plate, all formed into a cylindrical stack where the collector, control grid and micro-channel plate are separated by ceramic insulating washers. A control element is formed within each aperture of the micro-channel plate for controlling a critical angle of each aperture. A voltage is applied to the control element such that an electric field is generated within each micro-channel. By varying the magnitude of the electric field, the critical angle of the micro-channel plate can be electrically controlled, and as such, certain ion trajectories can be selected for entry into the ion energy analyzer.
    • 具有微通道板的离子能量分析器,其中微通道板的几何滤波特性被电控制。 离子能量分析仪包含金属收集器,控制栅格和微通道板,全部形成圆柱形堆叠,集电器,控制栅极和微通道板由陶瓷绝缘垫圈分隔开。 控制元件形成在微通道板的每个孔内,用于控制每个孔的临界角。 电压施加到控制元件,使得在每个微通道内产生电场。 通过改变电场的大小,可以电控制微通道板的临界角,并且因此可以选择某些离子轨迹以进入离子能量分析器。