会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • GRAPHEME-TO-PHONEME CONVERSION USING ACOUSTIC DATA
    • 使用声学数据的图形到电声转换
    • US20110251844A1
    • 2011-10-13
    • US13164683
    • 2011-06-20
    • Xiao LiAsela J. R. GunawardanaAlejandro Acero
    • Xiao LiAsela J. R. GunawardanaAlejandro Acero
    • G10L15/04
    • G10L13/08G10L15/063G10L15/187
    • Described is the use of acoustic data to improve grapheme-to-phoneme conversion for speech recognition, such as to more accurately recognize spoken names in a voice-dialing system. A joint model of acoustics and graphonemes (acoustic data, phonemes sequences, grapheme sequences and an alignment between phoneme sequences and grapheme sequences) is described, as is retraining by maximum likelihood training and discriminative training in adapting graphoneme model parameters using acoustic data. Also described is the unsupervised collection of grapheme labels for received acoustic data, thereby automatically obtaining a substantial number of actual samples that may be used in retraining. Speech input that does not meet a confidence threshold may be filtered out so as to not be used by the retrained model.
    • 描述了使用声学数据来改进用于语音识别的字形到音素转换,例如更准确地识别语音拨号系统中的语音名称。 描述了声学和图形(声学数据,音素序列,字形序列以及音素序列和图形序列之间的对齐)的联合模型,正如通过使用声学数据适应图形模型参数的最大似然训练和鉴别训练来重新训练。 还描述了用于接收的声学数据的无监督的字母标签集合,从而自动获得可用于再培训的大量实际样本。 不满足置信阈值的语音输入可以被滤除,以便不被再培训的模型使用。
    • 2. 发明申请
    • GRAPHEME-TO-PHONEME CONVERSION USING ACOUSTIC DATA
    • 使用声学数据的图形到电声转换
    • US20090150153A1
    • 2009-06-11
    • US11952267
    • 2007-12-07
    • Xiao LiAsela J. R. GunawardanaAlejandro Acero
    • Xiao LiAsela J. R. GunawardanaAlejandro Acero
    • G10L15/00
    • G10L13/08G10L15/063G10L15/187
    • Described is the use of acoustic data to improve grapheme-to-phoneme conversion for speech recognition, such as to more accurately recognize spoken names in a voice-dialing system. A joint model of acoustics and graphonemes (acoustic data, phonemes sequences, grapheme sequences and an alignment between phoneme sequences and grapheme sequences) is described, as is retraining by maximum likelihood training and discriminative training in adapting graphoneme model parameters using acoustic data. Also described is the unsupervised collection of grapheme labels for received acoustic data, thereby automatically obtaining a substantial number of actual samples that may be used in retraining. Speech input that does not meet a confidence threshold may be filtered out so as to not be used by the retrained model.
    • 描述了使用声学数据来改进用于语音识别的字形到音素转换,例如更准确地识别语音拨号系统中的语音名称。 描述了声学和图形(声学数据,音素序列,字形序列以及音素序列和图形序列之间的对齐)的联合模型,正如通过使用声学数据适应图形模型参数的最大似然训练和辨别性训练来重新训练。 还描述了用于接收的声学数据的无监督的字母标签集合,从而自动获得可用于再培训的大量实际样本。 不满足置信阈值的语音输入可以被滤除,以便不被再培训的模型使用。
    • 3. 发明授权
    • Grapheme-to-phoneme conversion using acoustic data
    • 使用声学数据的语音对音素转换
    • US07991615B2
    • 2011-08-02
    • US11952267
    • 2007-12-07
    • Xiao LiAsela J. R. GunawardanaAlejandro Acero
    • Xiao LiAsela J. R. GunawardanaAlejandro Acero
    • G10L15/04
    • G10L13/08G10L15/063G10L15/187
    • Described is the use of acoustic data to improve grapheme-to-phoneme conversion for speech recognition, such as to more accurately recognize spoken names in a voice-dialing system. A joint model of acoustics and graphonemes (acoustic data, phonemes sequences, grapheme sequences and an alignment between phoneme sequences and grapheme sequences) is described, as is retraining by maximum likelihood training and discriminative training in adapting graphoneme model parameters using acoustic data. Also described is the unsupervised collection of grapheme labels for received acoustic data, thereby automatically obtaining a substantial number of actual samples that may be used in retraining. Speech input that does not meet a confidence threshold may be filtered out so as to not be used by the retrained model.
    • 描述了使用声学数据来改进用于语音识别的字形到音素转换,例如更准确地识别语音拨号系统中的语音名称。 描述了声学和图形(声学数据,音素序列,字形序列以及音素序列和图形序列之间的对齐)的联合模型,正如通过使用声学数据适应图形模型参数的最大似然训练和鉴别训练来重新训练。 还描述了用于接收的声学数据的无监督的字母标签集合,从而自动获得可用于再培训的大量实际样本。 不满足置信阈值的语音输入可以被滤除,以便不被再培训的模型使用。
    • 4. 发明授权
    • Grapheme-to-phoneme conversion using acoustic data
    • 使用声学数据的语音对音素转换
    • US08180640B2
    • 2012-05-15
    • US13164683
    • 2011-06-20
    • Xiao LiAsela J. R. GunawardanaAlejandro Acero, Jr.
    • Xiao LiAsela J. R. GunawardanaAlejandro Acero, Jr.
    • G10L15/04
    • G10L13/08G10L15/063G10L15/187
    • Described is the use of acoustic data to improve grapheme-to-phoneme conversion for speech recognition, such as to more accurately recognize spoken names in a voice-dialing system. A joint model of acoustics and graphonemes (acoustic data, phonemes sequences, grapheme sequences and an alignment between phoneme sequences and grapheme sequences) is described, as is retraining by maximum likelihood training and discriminative training in adapting graphoneme model parameters using acoustic data. Also described is the unsupervised collection of grapheme labels for received acoustic data, thereby automatically obtaining a substantial number of actual samples that may be used in retraining. Speech input that does not meet a confidence threshold may be filtered out so as to not be used by the retrained model.
    • 描述了使用声学数据来改进用于语音识别的字形到音素转换,例如更准确地识别语音拨号系统中的语音名称。 描述了声学和图形(声学数据,音素序列,字形序列以及音素序列和图形序列之间的对齐)的联合模型,正如通过使用声学数据适应图形模型参数的最大似然训练和鉴别训练来重新训练。 还描述了用于接收的声学数据的无监督的字母标签集合,从而自动获得可用于再培训的大量实际样本。 不满足置信阈值的语音输入可以被滤除,以便不被再培训的模型使用。
    • 9. 发明授权
    • Confidence measure system using a near-miss pattern
    • 使用近似模式的置信度系统
    • US06571210B2
    • 2003-05-27
    • US09192001
    • 1998-11-13
    • Hsiao-Wuen HonAsela J. R. Gunawardana
    • Hsiao-Wuen HonAsela J. R. Gunawardana
    • G10L1506
    • G10L15/08
    • A method and system of performing confidence measure in a speech recognition system includes receiving an utterance of input speech and creating a near-miss pattern or a near-miss list of possible word entries for the utterance. Each word entry includes an associated value of probability that the utterance corresponds to the word entry. The near-miss list of possible word entries is compared with corresponding stored near-miss confidence templates. Each word in the vocabulary (or keyword list) of near-miss confidence template, which includes a list of word entries and each word entry in each list includes an associated value. Confidence measure for a particular hypothesis word is performed based on the comparison of the values in the near-miss list of possible word entries with the values of the corresponding near-miss confidence template.
    • 在语音识别系统中执行置信度测量的方法和系统包括:接收输入语音的发声,并创建用于话语的可能单词条目的接近丢失模式或近似列表。 每个词条目包括发音对应于词条目的概率的相关值。 将可能的词条的近奇列表与相应的存储的近错信度模板进行比较。 近错信号模板的词汇表(或关键字列表)中的每个单词包括一个词条目列表和每个列表中的每个单词条目包括相关联的值。 基于将可能词条近似列表中的值与对应的近错信度模板的值进行比较来执行特定假设词的置信度度量。