会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Conditional shape model for image processing
    • 用于图像处理的条件形状模型
    • US07894664B2
    • 2011-02-22
    • US11690063
    • 2007-03-22
    • William S. KerwinHunter R. Underhill
    • William S. KerwinHunter R. Underhill
    • G06K9/62
    • G06K9/00G06K9/6209G06K2209/05
    • A conditional active shape model wherein a training set of images of objects in a class of objects to be identified, such as vascular cross-sections, is supplemented with training observations of at least one second characteristic of the object. A conditional mean shape of the objects is calculated, conditioned on the second characteristic, thereby reducing the size of the probable search space for the shape. A conditional covariance matrix of the shapes is calculated, conditioned on the second characteristic, and the eigenvectors of the conditional covariance matrix corresponding to largest eigenvalues are calculated. The conditional mean shape, and the eigenvalues and eigenvectors of the conditional covariance matrix are then used in an active shape model to identify the shapes of objects in subsequent images.
    • 条件活动形状模型,其中要识别的对象类别(例如血管横截面)中的对象的训练集合被补充有对象的至少一个第二特征的训练观察。 根据第二特性计算对象的条件平均形状,从而减小形状的可能搜索空间的大小。 根据第二特性计算形状的条件协方差矩阵,并计算对应于最大特征值的条件协方差矩阵的特征向量。 条件平均形状,条件协方差矩阵的特征值和特征向量然后用于活动形状模型中,以识别后续图像中对象的形状。
    • 6. 发明申请
    • Automated in vivo plaque composition evaluation
    • 自动体内斑块组成评估
    • US20080009702A1
    • 2008-01-10
    • US11445510
    • 2006-06-01
    • Fei LiuWilliam S. KerwinDongxiang XuChun Yuan
    • Fei LiuWilliam S. KerwinDongxiang XuChun Yuan
    • A61B5/05
    • A61B5/05A61B5/02007A61B5/7264G06T7/12G06T7/143G06T2207/10072G06T2207/30101
    • A method for the automated segmentation of in vivo image data is disclosed. A region of carotid artery in a number of patients was imaged using MRI. Histological data for each imaged region was then obtained, identifying various atherosclerotic plaque components in the imaged region. A portion of the histological data, and the image data, was used to generate PDFs based on image intensity, and on morphological data (local wall thickness and distance from lumen). The remaining data was used to validate the method. A plurality of MRI images were taken at various weightings, and the images were registered and normalized. The lumen and outer wall boundary were identified. The PDFs were combined in a Bayesian analysis with the intensity and morphological data to calculate the likelihood that each pixel corresponded to each of four plaque components. A contour algorithm was applied to generate contours segmenting the images by composition.
    • 公开了一种用于体内图像数据的自动分割的方法。 使用MRI对许多患者的颈动脉区域进行成像。 然后获得每个成像区域的组织学数据,鉴定成像区域中的各种动脉粥样硬化斑块组分。 根据图像强度和形态学数据(局部壁厚和管腔距离),使用部分组织学资料和图像数据生成PDF。 剩余的数据用于验证方法。 以各种重量拍摄多个MRI图像,并对图像进行记录和归一化。 确定了管腔和外壁边界。 将PDF以贝叶斯分析与强度和形态数据组合,以计算每个像素对应于四个斑块组分中的每一个的可能性。 应用轮廓算法,通过组合生成轮廓分割图像。