会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • System and method for qualitatively and nondestructively inspecting
adhesive joints and other materials
    • 用于定性和非破坏性检查粘合剂接头和其他材料的系统和方法
    • US4944185A
    • 1990-07-31
    • US298597
    • 1989-01-17
    • William G. Clark, Jr.Warren R. Junker
    • William G. Clark, Jr.Warren R. Junker
    • G01N29/12
    • G01N29/12G01N29/2475G01N2291/0231G01N2291/0235G01N2291/02416G01N2291/0251
    • A system and method for nondestructively inspecting and monitoring materials that indicates the structural integrity of the material is disclosed. The inspection method includes the following steps. First, the material to be subsequently monitored, is tagged by dispersing a small amount of finely divided particles throughout the material. The tagged material is then applied in accordance with its application, such as adhesive material to two pieces to be joined to form an adhesive joint. When the adhesive joint or other material is to be inspected, the tagged particles are activated to cause an inherent structural resonance in the tagged material. The activation and structural resonance of the material is then monitored and measured with a probe. Finally, the structure resonance of the material is related to the structural integrity of the adhesive joint, the matrix-reinforcement interface integrity of a composite material, or the state of cure of a resin. The tagged particles may be ferromagnetic particles and the probe either an electromagnetic field coil and an actuator or an electromagnetic field coil and an acoustic emission probe. The tagged particles may be piezoelectric particles and the probe either an electric field and an acelerometer or an electric field and an acoustic emission probe. Alternately, the tagged particles may be acoustic impedance mismatch particles and the probe is an ultrasonic inspection probe.
    • 公开了一种用于非破坏性地检查和监测材料的系统和方法,其指示材料的结构完整性。 检查方法包括以下步骤。 首先,随后监测的材料通过在整个材料中分散少量细碎的颗粒来标记。 然后根据其应用将标记的材料如粘合剂材料施加到两个待接合的部件以形成粘合剂接合部。 当要检查粘合剂接头或其他材料时,标记的颗粒被活化以引起标记材料中固有的结构共振。 然后用探针监测和测量材料的活化和结构共振。 最后,材料的结构共振与粘合剂接头的结构完整性,复合材料的基体 - 增强界面完整性或树脂的固化状态有关。 标记的颗粒可以是铁磁颗粒,探针也可以是电磁场线圈和致动器或电磁场线圈和声发射探头。 标记的颗粒可以是压电颗粒,探针也可以是电场和加速度计或电场和声发射探头。 替代地,标记的颗粒可以是声阻抗失配粒子,并且探针是超声波检查探针。
    • 5. 发明授权
    • Non destructive testing for creep damage of a ferromagnetic workpiece
    • 铁磁性工件蠕变损伤的无损检测
    • US4746858A
    • 1988-05-24
    • US2538
    • 1987-01-12
    • Michael J. MetalaWilliam G. Clark, Jr.Warren R. Junker
    • Michael J. MetalaWilliam G. Clark, Jr.Warren R. Junker
    • G01N3/18G01N3/00G01N27/90G01R33/12G01N27/72
    • G01N27/9046
    • Rapid nondestructive testing of a ferromagnetic workpiece for creep damage is carried out by placing an eddy current coil adjacent to the workpiece, passing an alternating current through the coil, measuring the eddy current response as influenced by the workpiece, and comparing the current measurement to a current calibrated to known creep damage for the given ferromagnetic material. Correlations of the eddy current response to creep rate and time to failure are generated from creep rupture tests performed on specimens of the given material subjected to varying conditions of time, temperature and stress. Qualitative tests can also be performed to identify the point of greatest creep damage by passing the eddy current coil over the workpiece to find the location of the lowest eddy current response. Conventional creep damage tests can then be performed at that location if desired.
    • 通过将涡电流线圈放置在工件附近,使交流电流通过线圈,测量受工件影响的涡流响应,并将电流测量值与一个电流测量值进行比较,进行用于蠕变损伤的铁磁性工件的快速非破坏性测试 电流根据已知的铁磁材料的蠕变损伤进行校准。 涡流响应对蠕变速率和故障时间的相关性是由对经受不同时间,温度和应力条件的给定材料的试样进行的蠕变断裂试验产生的。 也可以进行定性测试,以通过将涡流线圈通过工件以找到最低涡流响应的位置来识别最大蠕变损伤点。 如果需要,可以在该位置执行常规的蠕变损伤测试。
    • 9. 发明授权
    • Apparatus and method for providing a combined ultrasonic and eddy
current inspection of a metallic body
    • 一种用于提供金属体的超声波和涡流检测的装置和方法
    • US4955235A
    • 1990-09-11
    • US369725
    • 1989-06-23
    • Michael J. MetalaWilliam G. Clark, Jr.Warren R. JunkerLee W. BurtnerThomas E. ArzentiHarold P. JohnsonRobert P. VestovichBruce W. Bevilacqua
    • Michael J. MetalaWilliam G. Clark, Jr.Warren R. JunkerLee W. BurtnerThomas E. ArzentiHarold P. JohnsonRobert P. VestovichBruce W. Bevilacqua
    • G01N27/90G01N29/22G01N29/265
    • G01N29/265G01N27/902G01N27/9046G01N29/221G01N2291/044G01N2291/045G01N2291/048G01N2291/105G01N2291/2636
    • Both an apparatus and a method for simultaneously inspecting the walls of a tube with both ultrasonic and eddy current probes is disclosed herein. The apparatus generally comprises a cylindrical housing assembly insertable within the tube to be inspected, and a probe carrier rotatably mounted within and helically movable with respect to the housing. The probe carrier holds three ultrasonic probes for transmitting ultrasonic beams which are directly oriented radially, chordally, and axially with resepect to the longitudinal axis of the tube, as well as an eddy current probe for simultaneously inspecting the walls of the tube with electromagnetic lines of flux. The apparatus further includes a helical drive train formed from a lead screw assembly having a motor means, a drive shaft, and a drive sleeve for imparting a helical scanning motion to the probe carrier with respect to the housing. The interior of the drive sleeve is slidably engaged to the shaft which is in turn coupled to the output of the motor, while the outside of the drive sleeve is threadedly engaged to the interior of the housing. The probe carrier is in turn coupled to the drive sleeve. In the method of the invention, the data generated by the three eddy current probes is correlated with the data generated by the eddy current probe for each specific section of the tube, and displayed simultaneously to the system operator. The resulting complementary display of both ultrasonic and eddy current probe information allows the system operator to accurately determine the size, shape and nature of any flaws which may be present in the walls of the tube.
    • 本文公开了一种用于同时检查具有超声波和涡流探针的管壁的装置和方法。 该装置通常包括可插入待检查的管内的圆柱形壳体组件和可旋转地安装在其内并相对于壳体螺旋移动的探针架。 探针架支撑三个超声波探头,用于传输超声波束,该超声波束直接径向,弦向和轴向定向到管的纵向轴线,以及涡流探针,用于同时用电磁线检测管的壁 助焊剂 该装置还包括由具有马达装置,驱动轴和驱动套筒的导螺杆组件形成的螺旋传动系,用于相对于壳体向探针支架施加螺旋扫描运动。 驱动套筒的内部可滑动地接合到轴,该轴又联接到马达的输出,而驱动套筒的外部螺纹地接合到壳体的内部。 探头托架又耦合到驱动套筒。 在本发明的方法中,由三个涡电流探头产生的数据与由涡流探针针对管的每个特定部分生成的数据相关,同时显示给系统操作者。 所得到的超声波和涡流探针信息的互补显示允许系统操作者准确地确定可能存在于管壁中的任何缺陷的尺寸,形状和性质。