会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Process and apparatus for producing a temperature sensitive element
    • 用于生产温度敏感元件的方法和设备
    • US4347201A
    • 1982-08-31
    • US089737
    • 1979-10-31
    • Masato SagawaWataru Yamagishi
    • Masato SagawaWataru Yamagishi
    • B22F1/00B22F3/14C22C1/04G01K7/36H01F1/00H01F1/01H01F1/055H01L37/04C04B35/50
    • H01F1/0556B22F3/14C22C1/0441G01K7/38H01F1/012Y10S264/58Y10T29/49076
    • A temperature sensitive element comprises fine grain powders which consist of a spin reorientation type ferromagnetic material having a transition temperature range, below which transition temperature range the easy direction of magnetization of the spin reorientation type ferromagnetic material is predetermined in one crystallographic direction thereof and above which transition temperature range the easy direction of magnetization is a predetermined other direction perpendicular to the predetermined one crystallographic direction. The temperature sensitive element is produced by compacting the fine grain powders of a spin reorientation type ferromagnetic material at a temperature higher than the transition temperature range. A polycrystalline rare earth cobalt alloy material made in accordance with the invention can now be used in the field where low Curie point ferrite or where bimetals have been used previously for a thermal valve or a temperature controlling device.
    • 温度敏感元件包括细晶粒,其由具有转变温度范围的自旋重新取向型铁磁材料组成,低于该转变温度范围,旋转重新取向型铁磁材料的易磁化方向在其一个晶体方向上被预先确定,并且其上方 转变温度范围内,容易的磁化方向是垂直于预定的一个晶体方向的预定的其它方向。 温度敏感元件通过在高于转变温度范围的温度下压制自旋重新取向型铁磁材料的细粒粉末来制备。 根据本发明制造的多晶稀土钴合金材料现在可以用于低居里点铁素体或双金属已经用于热阀或温度控制装置的领域。
    • 4. 发明授权
    • Method for forming adhesive layer
    • 形成粘合剂层的方法
    • US07354621B2
    • 2008-04-08
    • US10559435
    • 2004-06-02
    • Osamu ItataniMasato Sagawa
    • Osamu ItataniMasato Sagawa
    • B05D5/10B05D1/28
    • B05D1/28B05C3/05B05C3/08B05C9/02B05D1/22B05D5/10B05D2258/00C09J7/38
    • In a method for forming an adhesive layer on the surface of a workpiece before the formation of a coating film containing a powder on the workpiece, the present invention provides a method for forming the adhesive layer having a desired thickness. This object is achieved by the following method: An adhesive layer formation medium m1 coated with an adhesive material is made to collide with a workpiece W so that the adhesive material is transferred from the adhesive layer formation medium m1 to the workpiece W and forms an adhesive layer on the workpiece. An adhesive layer having a desired thickness can be formed on the workpiece by regulating the thickness of the adhesive material applied to the surface of the adhesive layer formation medium (i.e. the amount of the adhesive material held by a single adhesive layer formation medium). This enables the thickness of the powder coating as the final product to be controlled as desired.
    • 在形成在工件上含有粉末的涂膜之前在工件表面上形成粘合剂层的方法中,本发明提供了形成具有所需厚度的粘合剂层的方法。 该目的通过以下方法实现:使涂覆有粘合剂材料的粘合层形成介质m 1与工件W碰撞,使得粘合剂材料从粘合剂层形成介质m 1转移到工件W并形成 工件上的粘合剂层。 可以通过调节施加在粘合剂层形成介质的表面上的粘合剂材料的厚度(即,由单一的粘合剂层形成介质保持的粘合剂材料的量),在工件上形成具有所需厚度的粘合剂层。 这使得根据需要可以控制作为最终产品的粉末涂料的厚度。
    • 5. 发明授权
    • Powder compaction method
    • 粉末压实方法
    • US06764643B2
    • 2004-07-20
    • US10054954
    • 2002-01-25
    • Masato SagawaTochihiro WatanabeHiroshi Nagata
    • Masato SagawaTochihiro WatanabeHiroshi Nagata
    • B22F100
    • B30B15/302B30B11/00
    • A powder compaction method in which a powder p is filled by air tapping or other suitable method into a mold 1, then while the mold 1 being filled with the powder, the powder particles are bound with each other without application of force from outside the mold to form a compact C, and then the compact C is taken out from the mold 1. This method produces a variety of shapes of the compact far greater than in conventional methods, and net shape manufacturing of products with complex shapes is made possible by this method. Because this method uses far less binder compared to MIM and PIM that are expected as methods for producing products with complicated shapes, the time needed for elimination of the binder is much shorter than in MIM and PIM.
    • 粉末压制方法,其中粉末p通过空气攻丝或其它合适的方法填充到模具1中,然后当模具1填充粉末时,粉末颗粒彼此结合,而不受模具外部的力 以形成紧凑的C,然后将紧凑的C从模具1中取出。该方法产生远远大于常规方法的多种形状的紧凑形状,并且通过这种方式可以实现具有复杂形状的产品的净形状制造 方法。 由于与MIM和PIM相比,该方法使用的粘合剂远远少于生产具有复杂形状的产品的方法,所以消除粘合剂所需的时间比MIM和PIM短得多。
    • 7. 发明授权
    • Perpendicular magnetic recording medium and method of producing same
    • 垂直磁记录介质及其制造方法
    • US5660929A
    • 1997-08-26
    • US154393
    • 1993-11-18
    • Takao SuzukiMasato Sagawa
    • Takao SuzukiMasato Sagawa
    • G11B5/64G11B5/66B32B33/00
    • G11B5/656G11B5/64Y10S428/90Y10S428/928Y10T428/26Y10T428/265
    • A perpendicular magnetic recording medium is fabricated based on R.sub.21-60 (Fe.sub.1-y Co.sub.y).sub.z M.sub.0-10 wherein z is balance and at least 70 at % of R is Nd and/or Pr, the balance of R being one or more of other rare earth elements, and wherein y is less than 0.5 by atomic ratio. M is at least one of various additional metal elements. The Curie temperature Tc is between 70.degree. to 250.degree. C.; the saturation magnetization Ms is about 450 emu/cc or more; the uniaxial perpendicular magnetic anisotropy constant Ku of 2.5.times.10.sup.6 erg/cc or more is attained. Kerr rotation angle is 0.3 degree or more, which provides a magneto-optic recording medium. Since light rare earth elements having the collinear alignment of magnetic moment with Fe are used as a key element, it is possible to fabricate uniform perpendicular magnetic anisotropy thin films in a mass production scale at a low cost.
    • 基于R21-60(Fe1-yCoy)zM0-10制造垂直磁记录介质,其中z为余量,R为至少70原子%为Nd和/或Pr,其余R为其中一种或多种稀有金属 土元素,其中y按原子比小于0.5。 M是各种附加金属元素中的至少一种。 居里温度Tc为70〜250℃。 饱和磁化强度Ms约为450emu / cc以上; 获得2.5×10 6 erg / cc以上的单轴垂直磁各向异性常数Ku。 克尔旋转角度为0.3度以上,其提供磁光记录介质。 由于将具有磁矩与Fe的共线对准的轻稀土元素用作关键元件,所以可以以低成本大规模生产均匀的垂直磁各向异性薄膜。