会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • SELF-TEST CIRCUITRY TO DETERMINE MINIMUM OPERATING VOLTAGE
    • 自检电路确定最小工作电压
    • US20060259840A1
    • 2006-11-16
    • US10908452
    • 2005-05-12
    • Wagdi AbadeerGeorge BracerasAnthony BonaccioKevin Gorman
    • Wagdi AbadeerGeorge BracerasAnthony BonaccioKevin Gorman
    • G01R31/28
    • G01R31/3004
    • A solution for determining minimum operating voltages due to performance/power requirements would be valid for a wide range of actual uses. The solution includes a test flow methodology for dynamically reducing power consumption under applied conditions while maintaining application performance via a BIST circuit. There is additionally provided a test flow method for dynamically reducing power consumption to the lowest possible stand-by/very low power level under applied conditions that will still be sufficient to maintain data/state information. One possible application would be for controlling the voltage supply to a group of particular circuits on an ASIC (Application Specific Integrated Circuit). These circuits are grouped together in a voltage island where they would receive a voltage supply that can be different from the voltage supply other circuits on the same chip are receiving. The same solution could be applied to a portion of a microprocessor (the cache logic control, for example).
    • 用于确定由于性能/功率要求而导致的最小工作电压的解决方案对于广泛的实际应用是有效的。 该解决方案包括测试流程方法,用于在应用条件下动态降低功耗,同时通过BIST电路保持应用性能。 另外提供了一种测试流程方法,用于在仍然足以维护数据/状态信息的应用条件下将功耗动态地降低到最低可能待机/极低功率水平。 一种可能的应用是用于控制对ASIC(专用集成电路)上的一组特定电路的电压供应。 这些电路分组在一个电压岛中,在那里它们将接收可以与同一芯片正在接收的其它电路的电压供给不同的电压源。 相同的解决方案可以应用于微处理器的一部分(例如,高速缓存逻辑控制)。
    • 6. 发明申请
    • Electronically programmable antifuse and circuits made therewith
    • 电子可编程反熔丝和由其制成的电路
    • US20050133884A1
    • 2005-06-23
    • US11051703
    • 2005-02-04
    • John FifieldWagdi AbadeerWilliam Tonti
    • John FifieldWagdi AbadeerWilliam Tonti
    • H01L23/525H01L29/00
    • H01L23/5252H01L2924/0002H01L2924/3011H01L2924/00
    • An antifuse device (120) that includes a bias element (124) and an programmable antifuse element (128) arranged in series with one another so as to form a voltage divider having an output node (F) located between the bias and antifuse elements. When the antifuse device is in its unprogrammed state, each of the bias element and antifuse element is non-conductive. When the antifuse device is in its programmed state, the bias element remains non-conductive, but the antifuse element is conductive. The difference in the resistance of the antifuse element between its unprogrammed state and programmed state causes the difference in voltages seen at the output node to be on the order of hundreds of mili-volts when a voltage of 1 V is applied across the antifuse device. This voltage difference is so high that it can be readily sensed using a simple sensing circuit (228).
    • 一种反熔丝装置(120),其包括彼此串联布置的偏置元件(124)和可编程反熔丝元件(128),以形成具有位于偏置和反熔丝元件之间的输出节点(F)的分压器。 当反熔丝装置处于其未编程状态时,偏置元件和反熔丝元件中的每一个都是不导电的。 当反熔丝装置处于其编程状态时,偏置元件保持不导电,但是反熔丝元件是导电的。 反熔丝元件在其未编程状态和编程状态之间的电阻差异导致当在反熔断器件上施加1V的电压时,在输出节点处看到的电压差为几百微升。 该电压差非常高以至于可以使用简单的感测电路(228)容易地感测。
    • 8. 发明申请
    • Electronically Programmable Antifuse and Circuits Made Therewith
    • 电子可编程防腐和电路
    • US20070120221A1
    • 2007-05-31
    • US11627723
    • 2007-01-26
    • John FifieldWagdi AbadeerWilliam Tonti
    • John FifieldWagdi AbadeerWilliam Tonti
    • H01L29/00H01L21/326
    • H01L23/5252H01L2924/0002H01L2924/3011H01L2924/00
    • An antifuse device (120) that includes a bias element (124) and an programmable antifuse element (128) arranged in series with one another so as to form a voltage divider having an output node (F) located between the bias and antifuse elements. When the antifuse device is in its unprogrammed state, each of the bias element and antifuse element is non-conductive. When the antifuse device is in its programmed state, the bias element remains non-conductive, but the antifuse element is conductive. The difference in the resistance of the antifuse element between its unprogrammed state and programmed state causes the difference in voltages seen at the output node to be on the order of hundreds of mili-volts when a voltage of 1 V is applied across the antifuse device. This voltage difference is so high that it can be readily sensed using a simple sensing circuit (228).
    • 一种反熔丝装置(120),其包括彼此串联布置的偏置元件(124)和可编程反熔丝元件(128),以形成具有位于偏置和反熔丝元件之间的输出节点(F)的分压器。 当反熔丝装置处于其未编程状态时,偏置元件和反熔丝元件中的每一个都是不导电的。 当反熔丝装置处于其编程状态时,偏置元件保持不导电,但是反熔丝元件是导电的。 反熔丝元件在其未编程状态和编程状态之间的电阻差异导致当在反熔断器件上施加1V的电压时,在输出节点处看到的电压差为几百微升。 该电压差非常高以至于可以使用简单的感测电路(228)容易地感测。
    • 9. 发明申请
    • Resettable fuse device and method of fabricating the same
    • 可复位保险丝装置及其制造方法
    • US20060060938A1
    • 2006-03-23
    • US10948773
    • 2004-09-23
    • Wagdi AbadeerJohn FifieldRobert GauthierWilliam Tonti
    • Wagdi AbadeerJohn FifieldRobert GauthierWilliam Tonti
    • H01L29/00H01L21/44
    • H01L23/5256H01L2924/0002H01L2924/00
    • A resettable fuse device is fabricated on one surface of a semiconductor substrate (10) and includes: a gate region (20) having first and second ends; a source node (81) formed in proximity to the first end of the gate region; an extension region (52) formed to connect the source node to the first end of the gate region; and a drain node (80) formed in proximity to the second end of the gate region and separated from the gate region by a distance (D) such that upon application of a predetermined bias voltage to the drain node a connection between the drain node and the second end of the gate region is completed by junction depletion. A gate dielectric (30) and a gate electrode (40) are formed over the gate region. Current flows between the source node and the drain node when the predetermined bias is applied to both the drain node and the gate electrode.
    • 在半导体衬底(10)的一个表面上制造可重置熔丝器件,并且包括:具有第一和第二端的栅极区域(20) 源极节点(81),其形成在所述栅极区域的第一端附近; 形成为将源极节点连接到栅极区域的第一端的延伸区域(52) 以及漏极节点(80),其形成在栅极区域的第二端附近,并且与栅极区分离距离(D),使得在向漏极节点施加预定的偏置电压时,漏极节点和 栅极区域的第二端通过结损耗完成。 栅极电介质(30)和栅电极(40)形成在栅极区域上方。 当预定偏压施加到漏极节点和栅电极时,电流在源节点和漏极节点之间流动。