会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Mesh collision avoidance
    • 网格碰撞避免
    • US08917933B2
    • 2014-12-23
    • US12936425
    • 2009-04-02
    • Tobias KlinderRobin M. B. WolzAstrid R. FranzCristian Lorenz
    • Tobias KlinderRobin M. B. WolzAstrid R. FranzCristian Lorenz
    • G06K9/34G06K9/00G06T7/00
    • G06T7/0081G06T7/11G06T2207/10072G06T2207/10116G06T2207/30012
    • The invention relates to a system for segmenting an object in image data using model-based image segmentation. The system comprises a feature unit for identifying features in the image data for computing an external energy of a mesh on the basis of a current position of the mesh. The feature unit further comprises a candidate feature unit for selecting a plurality of candidate features in the image data. The feature unit further comprises a position unit for determining a position of each candidate feature of the plurality of the candidate features relative to a region of the image data. The feature unit further comprises a feature function unit for computing a strength of each candidate feature. The feature unit further comprises an evaluation unit for evaluating each candidate feature of the plurality of candidate features and for identifying the feature among the plurality of candidate features based on this evaluation.
    • 本发明涉及一种使用基于模型的图像分割来分割图像数据中的对象的系统。 该系统包括用于识别图像数据中的特征的特征单元,用于基于网格的当前位置计算网格的外部能量。 特征单元还包括用于在图像数据中选择多个候选特征的候选特征单元。 特征单元还包括位置单元,用于相对于图像数据的区域确定多个候选特征的每个候选特征的位置。 特征单元还包括用于计算每个候选特征的强度的特征函数单元。 特征单元还包括评估单元,用于基于该评估来评估多个候选特征中的每个候选特征并且用于识别多个候选特征中的特征。
    • 2. 发明申请
    • MESH COLLISION AVOIDANCE
    • MESH碰撞避免
    • US20110033104A1
    • 2011-02-10
    • US12936425
    • 2009-04-02
    • Tobias KlinderRobin M.B. WolzAstrid R. FranzCristian Lorenz
    • Tobias KlinderRobin M.B. WolzAstrid R. FranzCristian Lorenz
    • G06K9/46
    • G06T7/0081G06T7/11G06T2207/10072G06T2207/10116G06T2207/30012
    • The invention relates to a system (100) for segmenting an object in image data using model-based image segmentation, the system comprising a feature unit (120) for identifying features in the image data for computing an external energy of a mesh on the basis of a current position of the mesh, wherein the feature unit (120) further comprises a candidate feature unit (122) for selecting a plurality of candidate features in the image data, for identifying a feature to be included in the features identified in the image data, a position unit (124) for determining a position of each candidate feature of the plurality of the candidate features relative to a region of the image data, a feature function unit (126) for computing a strength of each candidate feature, wherein the strength of each candidate feature depends on the position of each candidate feature relative to the region, and an evaluation unit (128) for evaluating each candidate feature of the plurality of candidate features and for identifying the feature among the plurality of candidate features based on this evaluation. Determining whether a selected candidate feature is located inside the region which should be avoided, e.g., inside another mesh adapted to another object in the image data, allows penalizing this candidate feature during the computation of the strength of each feature and thus during the evaluation of the plurality of candidate features.
    • 本发明涉及一种用于使用基于模型的图像分割来分割图像数据中的对象的系统(100),该系统包括用于识别图像数据中用于计算网格的外部能量的特征的特征单元(120) 所述特征单元还包括用于选择所述图像数据中的多个候选特征的候选特征单元(122),用于识别要包括在所述图像中标识的特征中的特征 数据,用于确定多个候选特征相对于图像数据的区域的每个候选特征的位置的位置单元(124),用于计算每个候选特征的强度的特征函数单元(126),其中, 每个候选特征的强度取决于每个候选特征相对于该区域的位置,以及评估单元(128),用于评估多个候选特征中的每个候选特征,并且f 或基于该评估来识别多个候选特征中的特征。 确定所选择的候选特征是否位于应该避免的区域内,例如在图像数据中适应于另一物体的另一个网格内,允许在计算每个特征的强度期间惩罚该候选特征,并且因此在评估期间 多个候选特征。
    • 3. 发明授权
    • Anatomy-defined automated image generation
    • 解剖定义的自动图像生成
    • US08957891B2
    • 2015-02-17
    • US13120188
    • 2009-09-18
    • Cristian LorenzTobias Klinder
    • Cristian LorenzTobias Klinder
    • G06T15/00G06T15/08
    • G06T15/08G06T2210/41
    • A system for visualizing an object in image data using a first cross-section surface coupled to a model of the object, the system comprising a model unit for adapting a model to the object in the image data, a surface unit for adapting the first cross-section surface to the adapted model on the basis of the coupling between the first cross-section surface and the model, and a visualization unit for computing an image from the image data on the basis of the adapted first cross-section surface. The first cross-section surface may be used to define a slice of the image data for visualizing useful features of the object. Advantageously, adapting the model to the object in the image data and the coupling between the first cross-section surface and the model enable the first cross-section surface to be adapted to the image data. Thus, the shape, orientation and/or position of the adapted first cross-section surface is/are based on the shape, orientation and/or position of the adapted model.
    • 一种用于使用耦合到所述对象的模型的第一截面表面来可视化所述图像数据中的对象的系统,所述系统包括用于使模型适应所述图像数据中的对象的模型单元,用于适配所述第一十字的表面单元 基于所述第一横截面和所述模型之间的耦合的所述适配模型的切割表面以及用于基于所述适配的第一横截面从所述图像数据计算图像的可视化单元。 第一横截面可以用于定义图像数据的切片以便可视化对象的有用特征。 有利的是,使模型适应图像数据中的对象和第一横截面和模型之间的耦合使得第一横截面能适应图像数据。 因此,适配的第一横截面的形状,取向和/或位置基于适配模型的形状,取向和/或位置。
    • 5. 发明申请
    • ANATOMY-DEFINED AUTOMATED CPR GENERATION
    • 解剖自动CPR发生
    • US20110175909A1
    • 2011-07-21
    • US13120188
    • 2009-09-18
    • Cristian LorenzTobias Klinder
    • Cristian LorenzTobias Klinder
    • G06T15/00
    • G06T15/08G06T2210/41
    • The invention relates to a system (100) for visualizing an object in image data using a first cross-section surface coupled to a model of the object, the system comprising a model unit for adapting a model to the object in the image data, a surface unit for adapting the first cross-section surface to the adapted model on the basis of the coupling between the first cross-section surface and the model, and a visualization unit for computing an image from the image data on the basis of the adapted first cross-section surface. The first cross-section surface may be used to define a slice of the image data for visualizing useful features of the object. Any suitable rendering technique, e.g. maximum intensity projection, can be used by the visualization unit to compute the image based on the slice of the image data defined by the first cross-section surface. Because the first cross-section surface of the invention is coupled to the model, the position, orientation and/or shape of the surface is determined by the model adapted to the object in the image data. Advantageously, adapting the model to the object in the image data and the coupling between the first cross-section surface and the model enable the first cross-section surface to be adapted to the image data. Thus, the shape, orientation and/or position of the adapted first cross-section surface is/are based on the shape, orientation and/or position of the adapted model. Adapting the first cross-section surface directly to the object based on features in the image data would be less reliable and less accurate because the surface comprises fewer features of the object than the model.
    • 本发明涉及一种用于使用耦合到对象的模型的第一横截面来使图像数据中的对象可视化的系统(100),该系统包括用于使模型适应图像数据中的对象的模型单元, 表面单元,用于根据第一横截面和模型之间的耦合使第一横截面适应于适应模型;以及可视化单元,用于基于所适配的第一横截面和模型从图像数据计算图像 横截面。 第一横截面可以用于定义图像数据的切片以便可视化对象的有用特征。 任何合适的渲染技术,例如 最大强度投影可以被可视化单元用于基于由第一横截面表面限定的图像数据的切片来计算图像。 因为本发明的第一横截面与模型相连,表面的位置,取向和/或形状由适合图像数据中对象的模型确定。 有利的是,使模型适应图像数据中的对象和第一横截面和模型之间的耦合使得第一横截面能适应图像数据。 因此,适配的第一横截面的形状,取向和/或位置基于适配模型的形状,取向和/或位置。 基于图像数据中的特征将第一横截面直接适应对象将不那么可靠,并且不太准确,因为该表面包含比模型更少的对象特征。
    • 6. 发明申请
    • AUTOMATIC POINT-WISE VALIDATION OF RESPIRATORY MOTION ESTIMATION
    • 呼吸运动估计的自动点智慧验证
    • US20130108117A1
    • 2013-05-02
    • US13808607
    • 2011-07-05
    • Sven KabusTobias KlinderCristian Lorenz
    • Sven KabusTobias KlinderCristian Lorenz
    • G06T7/20
    • G06T7/20G06T3/0081G06T7/0016G06T7/30G06T2207/10081G06T2207/30061
    • A system for validating motion estimation comprising a field unit (110) for obtaining a deformation vector field (DVF) estimating the motion by transforming a first image at a first phase of the motion into a second image at a second phase of the motion, a metric unit (120) for computing a metric of a local volume change at a plurality of locations, and a conformity unit (130) for computing a conformity measure based on the computed metric of the local volume change at the plurality of locations and a local property of the first or second image defined at the plurality of locations. Based on the value of the conformity measure, the DFV estimating the motion is validated. Experiments show that the conformity measure based on the computed metric of a local volume change at a plurality of locations and the local property of the first or second image, defined at the plurality of locations, does not necessarily favor a large weight for the outer force to provide a more accurate registration. One reason for this observation may be that large deformations providing more accurate alignment often lead to deformations resulting in unreasonably large volume changes. DVFs comprising such deformations thus are more likely to be discarded by the system of the invention.
    • 一种用于验证运动估计的系统,包括:场单元(110),用于通过在运动的第二阶段将运动的第一阶段的第一图像变换为第二图像来获得估计运动的变形矢量场(DVF); 用于计算多个位置处的本地卷变化的度量的度量单位(120),以及用于基于所计算的所述多个位置处的本地卷变化的度量的度量单位(130)以及局部 在多个位置定义的第一或第二图像的属性。 根据合格度的值,对运动的DFV进行了验证。 实验表明,基于多个位置处的局部体积变化的计算度量和在多个位置处限定的第一或第二图像的局部属性的一致性度量不一定有利于外力的大重量 提供更准确的注册。 这种观察的一个原因可能是提供更精确对准的大变形通常导致变形,导致不合理地大的体积变化。 包括这种变形的DVF因此更可能被本发明的系统丢弃。
    • 9. 发明授权
    • Choosing anatomical variant model for image segmentation
    • 选择图像分割的解剖变异模型
    • US09367913B2
    • 2016-06-14
    • US13823472
    • 2011-09-13
    • Cristian LorenzHans BarschdorfTobias KlinderRaghed Hanna
    • Cristian LorenzHans BarschdorfTobias KlinderRaghed Hanna
    • G06T7/00G06T17/00G06T15/08
    • G06T7/0012G06T7/12G06T7/149G06T15/08G06T17/00G06T2207/30004
    • A system (100) for segmenting an object in an image adapts a first model for segmenting the object to the image. A feature is extracted from the image based on the adapted first model. A second model is selected for segmenting the object from a plurality of models for segmenting the object, based on the feature extracted from the image. The second model includes additional detail of the object. The second model is utilized based on the adapted first model and/or the feature extracted from the image; the initialized second model is adapted to the image. The features extracted from the image based on the adapted first model help the system (100) to select the second model for segmenting the object from a plurality of models for segmenting the object. The adapted first model and/or the extracted features are also used for initializing the second model. Because the second model includes the additional detail of the object, the segmentation result using the second model is more complete than the segmentation result Obtained using the first model. Moreover, the initialization of the second model based on the adapted first model and/or the detected features Improves the accuracy of the second model adaptation.
    • 用于在图像中分割对象的系统(100)适应用于将对象分割成图像的第一模型。 基于适配的第一模型从图像中提取特征。 基于从图像提取的特征,选择第二模型用于从多个模型分割对象以分割对象。 第二个模型包括对象的附加细节。 基于适应的第一模型和/或从图像提取的特征来利用第二模型; 初始化的第二模型适用于图像。 基于适配的第一模型从图像提取的特征帮助系统(100)选择用于从多个模型分割对象的第二模型以分割对象。 适应的第一模型和/或提取的特征也用于初始化第二模型。 因为第二个模型包括对象的附加细节,所以使用第二模型的分割结果比使用第一模型获得的分割结果更完整。 此外,基于适配的第一模型和/或检测到的特征对第二模型的初始化提高了第二模型适应的准确性。