会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明授权
    • High performance thermoelectric materials and methods of preparation
    • 高性能热电材料及其制备方法
    • US5610366A
    • 1997-03-11
    • US189087
    • 1994-01-28
    • Jean-Pierre FleurialThierry F. CaillatAlexander Borshchevsky
    • Jean-Pierre FleurialThierry F. CaillatAlexander Borshchevsky
    • C22C19/07H01L35/14H01L35/18H01L35/22H01L35/32H01L35/34
    • H01L35/22H01L35/18H01L35/32Y10S257/93
    • Transition metals (T) of Group VIII (Co, Rh and Ir) have been prepared as semiconductor alloys with Sb having the general formula TSb.sub.3. The skutterudite-type crystal lattice structure of these semiconductor alloys and their enhanced thermoelectric properties results in semiconductor materials which may be used in the fabrication of thermoelectric elements to substantially improve the efficiency of the resulting thermoelectric device. Semiconductor alloys having the desired skutterudite-type crystal lattice structure may be prepared in accordance with the present invention by using vertical gradient freeze techniques, liquid-solid phase sintering techniques, low temperature powder sintering and/or hot-pressing. Measurements of electrical and thermal transport properties of selected semiconductor materials prepared in accordance with the present invention, demonstrated high Hall mobilities (up to 8000 cm.sup.2.V.sup.-1.s.sup.-1), good Seebeck coefficients (up to 400 .mu.VK.sup.-1 between 300.degree. C. and 700.degree. C.), and low thermal conductivities (as low as 15 mW/cmK). Optimizing the transport properties of semiconductor materials prepared from elemental mixtures Co, Rh, Ir and Sb resulted in a two fold increase in the thermoelectric figure of merit (ZT) at temperatures as high as 400.degree. C. for thermoelectric elements fabricated from such semiconductor materials.
    • 已经制备了第VIII族(Co,Rh和Ir)的过渡金属(T)作为具有通式为TSb3的Sb的半导体合金。 这些半导体合金的方钴矿型晶格结构及其增强的热电性能导致可用于制造热电元件的半导体材料,以显着提高所得热电装置的效率。 具有期望的方钴矿型晶格结构的半导体合金可以通过使用垂直梯度冷冻技术,液相 - 固相烧结技术,低温粉末烧结和/或热压法,根据本发明制备。 根据本发明制备的所选择的半导体材料的电和热传输性能的测量表明,高的霍尔迁移率(高达8000cm2.V-1.s-1),良好的塞贝克系数(高达400μVK-1之间 300℃,700℃),导热系数低(15mW / cmK)。 优化从元素混合物Co,Rh,Ir和Sb制备的半导体材料的传输性能导致在这种半导体材料制造的热电元件的温度高达400℃时,热电性能(ZT)增加了两倍 。
    • 7. 发明授权
    • Advanced thermoelectric materials with enhanced crystal lattice
structure and methods of preparation
    • 先进的热电材料具有增强的晶格结构和制备方法
    • US5747728A
    • 1998-05-05
    • US412700
    • 1995-03-29
    • Jean-Pierre FleurialThierry F. CaillatAlexander Borshchevsky
    • Jean-Pierre FleurialThierry F. CaillatAlexander Borshchevsky
    • C22C19/07H01L35/14H01L35/18H01L35/22H01L35/32H01L35/34
    • H01L35/22H01L35/18H01L35/32Y10S257/93
    • New skutterudite phases including Ru.sub.0.5 Pd.sub.0.5 Sb.sub.3, RuSb.sub.2 Te, and FeSb.sub.2 Te, have been prepared having desirable thermoelectric properties. In addition, a novel thermoelectric device has been prepared using skutterudite phase Fe.sub.0.5 Ni.sub.0.5 Sb.sub.3. The skutterudite-type crystal lattice structure of these semiconductor compounds and their enhanced thermoelectric properties results in semiconductor materials which may be used in the fabrication of thermoelectric elements to substantially improve the efficiency of the resulting thermoelectric device. Semiconductor materials having the desired skutterudite-type crystal lattice structure may be prepared in accordance with the present invention by using powder metallurgy techniques. Measurements of electrical and thermal transport properties of selected semiconductor materials prepared in accordance with the present invention, demonstrated high Hall mobilities and good Seebeck coefficients. These materials have low thermal conductivity and relatively low electrical resistivity, and are good candidates for low temperature thermoelectric applications.
    • 已经制备了包括Ru0.5Pd0.5Sb3,RuSb2Te和FeSb2Te的新的方钴矿相,具有期望的热电性质。 此外,已经使用方钴矿相Fe0.5Ni0.5Sb3制备了一种新型的热电装置。 这些半导体化合物的方钴矿型晶格结构及其增强的热电性能导致可用于制造热电元件的半导体材料,以显着提高所得热电装置的效率。 具有期望的方钴矿型晶格结构的半导体材料可以通过使用粉末冶金技术根据本发明制备。 根据本发明制备的所选半导体材料的电和热传输性能的测量表明,霍尔迁移率高,塞贝克系数好。 这些材料具有低导热性和相对低的电阻率,并且是低温热电应用的良好候选者。
    • 9. 发明授权
    • Semiconductor apparatus utilizing gradient freeze and liquid-solid
techniques
    • 采用梯度冷冻和液固技术的半导体装置
    • US5769943A
    • 1998-06-23
    • US101901
    • 1993-08-03
    • Jean-Pierre FleurialThierry F. CaillatAlexander Borshchevsky
    • Jean-Pierre FleurialThierry F. CaillatAlexander Borshchevsky
    • H01L35/18H01L35/22H01L35/32C30B35/00
    • H01L35/18H01L35/22H01L35/32Y10S117/914Y10T117/1076Y10T117/1096
    • Transition metals of Group VIII (Co, Rh and Ir) have been prepared as semiconductor compounds with the general formula TSb.sub.3. The skutterudite-type crystal lattice structure of these semiconductor compounds and their enhanced thermoelectric properties results in semiconductor materials which may be used in the fabrication of thermoelectric elements to substantially improve the efficiency of the resulting thermoelectric device. Semiconductor materials having the desired skutterudite-type crystal lattice structure may be prepared in accordance with the present invention by using vertical gradient freezing techniques and/or liquid phase sintering techniques. Measurements of electrical and thermal transport properties of selected semiconductor materials prepared in accordance with the present invention, demonstrated high Hall mobilities (up to 1200 cm.sup.2.V.sup.-1.s.sup.-1) and good Seebeck coefficients (up to 150 .mu.VK.sup.-1 between 300.degree. C. and 700.degree. C.). Optimizing the transport properties of semiconductor materials prepared from elemental mixtures Co, Rh, Ir and Sb resulted in a substantial increase in the thermoelectric figure of merit (ZT) at temperatures as high as 400.degree. C. for thermoelectric elements fabricated from such semiconductor materials.
    • 已经制备了第VIII族(Co,Rh和Ir)的过渡金属,作为具有通式TSb3的半导体化合物。 这些半导体化合物的方钴矿型晶格结构及其增强的热电性能导致可用于制造热电元件的半导体材料,以显着提高所得热电装置的效率。 具有所需方钴矿型晶格结构的半导体材料可以通过使用垂直梯度冷冻技术和/或液相烧结技术根据本发明制备。 根据本发明制备的选择的半导体材料的电和热传输性能的测量表明,霍尔迁移率高(高达1200cm2.V-1.s-1)和良好的塞贝克系数(高达150μVK-1之间 300℃,700℃)。 从元素混合物Co,Rh,Ir和Sb制备的半导体材料的传输性能优化导致在由这种半导体材料制造的热电元件的高达400℃的温度下,热电性能(ZT)显着增加。