会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method and apparatus for providing ablation-free laser marking on hard disk media
    • 在硬盘介质上提供无消融激光打标的方法和装置
    • US06518540B1
    • 2003-02-11
    • US09332756
    • 1999-06-14
    • Teng Soon WeeLian Boon KohDaming LiuYuan YuanYong Feng LuJui Kiat GohKuan Teck Chang
    • Teng Soon WeeLian Boon KohDaming LiuYuan YuanYong Feng LuJui Kiat GohKuan Teck Chang
    • B23K2618
    • B23K26/361
    • A method and apparatus for creating ablation-free visible markings on a multi-layer hard disk magnetic storage media by laser-induced deformation while maintaining the integrity of the protective carbon layer, and without destroying the multi-layered structure of the media. The apparatus includes a laser generator, a rotatable optical plate and a beamsplitter by which the fluence of the beam can be controlled without altering the power setting to the laser generator, a beam sampler for determining the fluence of the beam, and an optical plate which acts with the beamsplitter to eliminate unwanted reflection of the laser beam. The laser beam is steered by a beamsteerer to a hard disk held in a material handling unit. This technique is highly suitable for marking or labeling finished hard disks for the purposes of identification and traceability, without creating any short-term or long-term contamination problems. The corresponding storage media so marked are also claimed.
    • 一种用于通过激光诱导变形在多层硬盘磁性存储介质上产生无消融可见标记的方法和装置,同时保持保护性碳层的完整性,并且不破坏介质的多层结构。 该装置包括激光发生器,可旋转光学板和分束器,通过该分束器可以控制光束的注量而不改变对激光发生器的功率设置,用于确定光束的光束的光束采样器和光学板, 与分束器一起作用以消除激光束的不必要的反射。 激光束被束流器转向保持在材料处理单元中的硬盘。 该技术非常适合于为了识别和追溯而进行标记或标记成品硬盘,而不会产生任何短期或长期的污染问题。 还声明了如此标记的相应存储介质。
    • 4. 发明授权
    • Method and apparatus for removal of mold flash
    • 去除模具闪光的方法和装置
    • US06576867B1
    • 2003-06-10
    • US09857724
    • 2002-02-12
    • Yong Feng LuYak Hui SimQiong ChenLong Chen LaiBin Othman Rustam
    • Yong Feng LuYak Hui SimQiong ChenLong Chen LaiBin Othman Rustam
    • B23K2636
    • H01L21/67092B08B7/0042H01L21/56H01L2924/0002H01L2924/00
    • A method and apparatus for the removal of mold flash from an IC device using a non-thermal laser ablation method. Ablation is achieved under conditions in which the mold flash is converted to plasma under short laser pulses which do not give sufficient time or energy for significant thermal processes to occur. As a result, the heat sink underneath the mold flash is prevented from heating up due to lack of heat transfer, thereby protecting the heat sink from heat damages. According to one feature of the invention, a mask is provided to protect the molded packaging of the IC device from the laser beam. The mask has at least one hole which corresponds to the heat sink of the device wherethrough the laser beam can pass. According to another feature of the invention, a large beam diameter is provided to increase the efficiency of the deflashing process.
    • 一种使用非热激光烧蚀方法从IC器件去除模具闪光的方法和装置。 在短激光脉冲下将模具闪光转换成等离子体的条件下实现消融,这对于显着的热处理没有给出足够的时间或能量。 结果,由于缺少热传递,防止模具闪光下面的散热器被加热,从而保护散热器免受热损坏。 根据本发明的一个特征,提供一种掩模以保护IC器件的模制封装免受激光束的影响。 掩模具有至少一个孔,其对应于通过激光束可以通过的装置的散热器。 根据本发明的另一个特征,提供了大的光束直径以提高去屑过程的效率。
    • 5. 发明授权
    • Pulsed laser salicidation for fabrication of ultra-thin silicides in
sub-quarter micron devices
    • 用于在二分之一微米器件中制造超薄硅化物的脉冲激光硫化
    • US6156654A
    • 2000-12-05
    • US206746
    • 1998-12-07
    • Chaw Sing HoYuan Ping LeeChan LapYong Feng LuR. P.G. Karunasiri
    • Chaw Sing HoYuan Ping LeeChan LapYong Feng LuR. P.G. Karunasiri
    • H01L21/268H01L21/28H01L21/285H01L21/336H01L21/44
    • H01L29/66628H01L21/268H01L21/28518H01L29/665H01L21/28052
    • Methods are disclosed for forming ultra-thin (.about.300-.ANG.), uniform and stoichiometric C54-titanium silicide with a Ti film thickness of 200-300 .ANG. using pulsed laser salicidation. The invention achieves this by preferably step-scanning from die to die, across the wafer using laser pulses with an optical fluence (laser energy) ranging from 0.1 to 0.2 J/cm.sup.2 for approximately 23 nanoseconds per pulse. The source of radiation can be a XeCl or KrF excimer laser, or one in which the laser's wavelength is chosen such that the laser energy is absorbed the most by the refractory metal, i.e. titanium (Ti), cobalt (Co) or nickel (Ni). The laser beam size is typically die-size or can be fine tuned to 1 to 100 .mu.m and can be optimized to reduce the intensity variation across the laser spot diameter. At each position between 1 to 100 pulses can be emitted on the wafer. Localized heating is possible with the ability to establish the ambient temperature at or below 200.degree. C.
    • 公开了使用脉冲激光盐析法形成超薄(DIFFERENCE 300-ANGSTROM),均匀和化学计量的C54-硅化钛,Ti膜厚度为200-300安培的方法。 本发明通过优选地使用具有0.1至0.2J / cm 2的光能(激光能量)的脉冲,每脉冲约23纳秒的激光脉冲,优选地通过晶片将晶片从芯片到裸片逐步扫描。 辐射源可以是XeCl或KrF准分子激光器,或者其中选择激光器的波长使得激光能量被难熔金属,即钛(Ti),钴(Co)或镍(Ni )。 激光束尺寸通常是模具尺寸或可以微调到1至100μm,并且可以被优化以减少激光光斑直径上的强度变化。 在晶片上可以发射1至100个脉冲的每个位置。 局部加热是可能的,能够建立环境温度在或低于200℃。
    • 8. 发明授权
    • Method of multiple pulse laser annealing to activate ultra-shallow junctions
    • 多脉冲激光退火激活超浅结的方法
    • US06897118B1
    • 2005-05-24
    • US10776794
    • 2004-02-11
    • Chyiu-Hyia PoonByung Jin ChoYong Feng LuAlex SeeMousumi Bhat
    • Chyiu-Hyia PoonByung Jin ChoYong Feng LuAlex SeeMousumi Bhat
    • H01L21/265H01L21/268H01L21/324H01L21/336H01L21/8238H01L21/20H01L21/36
    • H01L29/6659H01L21/26506H01L21/26513H01L21/268H01L21/324H01L21/823814
    • A method for forming a highly activated ultra shallow ion implanted semiconductive elements for use in sub-tenth micron MOSFET technology is described. A key feature of the method is the ability to activate the implanted impurity to a highly active state without permitting the dopant to diffuse further to deepen the junction. A selected single crystalline silicon active region is first amorphized by implanting a heavy ion such as silicon or germanium. A semiconductive impurity for example boron is then implanted and activated by pulsed laser annealing whereby the pulse fluence, frequency, and duration are chosen to maintain the amorphized region just below it's melting temperature. It is found that just below the melting temperature there is sufficient local ion mobility to secure the dopant into active positions within the silicon matrix to achieve a high degree of activation with essentially no change in concentration profile. The selection of the proper laser annealing parameters is optimized by observation of the reduction of sheet resistance and concentration profile as measured on a test site. Application of the method is applied to forming a MOS FET and a CMOS device. The additional processing steps required by the invention are applied simultaneously to both n-channel and p-channel devices of the CMOS device pair.
    • 描述了用于形成用于次十分之一米MOSFET技术的高激活超浅离子注入半导体元件的方法。 该方法的关键特征是能够将注入的杂质激活到高活性状态,而不允许掺杂剂进一步扩散以加深该结。 选择的单晶硅有源区域首先通过注入重离子如硅或锗来非晶化。 然后通过脉冲激光退火将诸如硼的半导体杂质注入并激活,由此选择脉冲能量密度,频率和持续时间以将非晶化区域保持在低于其熔融温度。 已经发现,恰好低于熔融温度,存在足够的局部离子迁移率,以将掺杂剂固定在硅基质内的活性位置,以实现高度的活化,基本上没有浓度分布的变化。 通过观察在测试部位测量的薄层电阻和浓度分布的降低来优化选择适当的激光退火参数。 该方法的应用用于形成MOS FET和CMOS器件。 本发明所需的附加处理步骤同时应用于CMOS器件对的n沟道和p沟道器件。