会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Diagnostic apparatus for nuclear medicine
    • 核医学诊断仪器
    • US06281504B1
    • 2001-08-28
    • US09325800
    • 1999-06-04
    • Takuzo TakayamaTakashi IchiharaNobutoku Motomura
    • Takuzo TakayamaTakashi IchiharaNobutoku Motomura
    • G01T117
    • G01T1/1615G01T1/1648
    • A diagnostic apparatus for nuclear medicine capable of performing an operation of counting gamma rays for a TCT simultaneously with an operation of counting gamma rays for an SPECT has a SPECT counter for counting, as the number of photons, gamma rays passed through a SPECT energy window centered at a photoelectric peak of the SPECT gamma rays and a TCT counter for counting, as the number of photons, gamma rays passed through a TCT energy window centered at a photoelectric peak of the TCT gamma rays. The number of photons of the gamma rays passed through the SPECT energy window contains the number of photons of K-X rays generated due to a photoelectric effect produced by the TCT gamma rays in collimators of the detector. A K-X ray processor estimates the number of photons of mixed K-X rays on the basis of the number of photons counted at the TCT counter. The K-X ray correction processor performs K-X ray correction on the photon number counted at the SPECT counter on the basis of the photon number of the estimated K-X rays. Since the number of photons passed through the TCT energy window and number of photons of K-X rays passed through the SPECT energy window have a very strong correlation from the standpoint of probability statistics, the accuracy with which the number of photons of the K-X rays passed through the SPECT energy window is estimated is very high. It is, therefore, possible to effectively reduce the K-X rays passed through the SPECT energy window.
    • 一种用于核医学的诊断装置,其能够对用于SPECT的伽马射线计数的操作同时执行对TCT的伽马射线进行计数的操作,具有SPECT计数器,用于计数通过SPECT能量窗口的γ射线的光子数 以SPECT伽马射线的光电峰为中心,以及用于计数的TCT计数器,作为光子的数量,伽马射线通过以TCT伽马射线的光电峰为中心的TCT能量窗。 通过SPECT能量窗口的γ射线的光子数目包含由于由检测器的准直仪中的TCT伽马射线产生的光电效应而产生的K-X射线的光子数。 基于在TCT计数器上计数的光子数,K-X射线处理器估计混合K-X射线的光子数。 基于估计的K-X射线的光子数,K-X射线校正处理器对在SPECT计数器上计数的光子数进行K-X射线校正。 由于通过TCT能量窗口的光子数目和通过SPECT能量窗口的KX射线的光子数量从概率统计的观点来看具有非常强的相关性,即KX射线的光子数量通过的准确度 SPECT能量窗估计非常高。 因此,有可能有效地减少通过SPECT能量窗口的K-X射线。
    • 3. 发明授权
    • Method and apparatus for reconstructing SPECT image by utilizing two
separate reconstruction filter functions
    • 通过利用两个独立的重建滤波器函数来重建SPECT图像的方法和装置
    • US5434416A
    • 1995-07-18
    • US217102
    • 1994-03-24
    • Nobutoku MotomuraTakashi Ichihara
    • Nobutoku MotomuraTakashi Ichihara
    • G06T11/00A61B6/00G01T1/166G06F19/00
    • G06T11/005A61B6/037G06T2211/421
    • A method and an apparatus for reconstructing SPECT image capable of improving the SPECT image resolution. The apparatus includes: a detector, including a fan-beam collimator, for detecting gamma (.gamma.) rays emitted from a radio isotope injected into a biological body; a rotation unit for effecting relative rotation between the biological body and the detector about a center of rotation to thereby acquire projection data from a different direction; a first reconstructing unit for convoluting the projection data obtained from the detector, by a first convolution function, and for back-projecting the convoluted projection data to a specific region which lies in a sufficiently close vicinity of the detector; a second reconstructing unit for convoluting the projection data by a second convolution function, and for back-projecting the secondly convoluted projection data to another specific region; and display means for displaying thereon a distribution image reconstructed by the first and second reconstructing units.
    • 一种用于重建能够改善SPECT图像分辨率的SPECT图像的方法和装置。 该装置包括:检测器,包括扇形光束准直器,用于检测从注入生物体的放射性同位素发射的伽马射线; 旋转单元,用于围绕旋转中心实现生物体和检测器之间的相对旋转,从而从不同方向获取投影数据; 第一重建单元,用于通过第一卷积函数卷积从所述检测器获得的投影数据,以及将所述卷积投影数据反投影到位于所述检测器的所述特定区域的特定区域; 第二重建单元,用于通过第二卷积函数卷积投影数据,以及用于将第二卷积投影数据反投影到另一特定区域; 以及显示装置,用于在其上显示由第一和第二重建单元重建的分布图像。
    • 4. 发明授权
    • Method for correcting positional shift of gamma camera apparatus and
positional shift correcting apparatus thereof
    • 用于校正伽马相机装置及其位置偏移校正装置的位置偏移的方法
    • US5173608A
    • 1992-12-22
    • US659551
    • 1991-02-22
    • Nobutoku MotomuraTakashi Ichihara
    • Nobutoku MotomuraTakashi Ichihara
    • G01T1/164
    • G01T1/1648G01T1/1642A61B6/037
    • In a gamma camera apparatus, positional shifts contained in an output coordinate matrix of a gamma-ray detector by a method comprising the steps of: positioning a reference RI (radio isotope) source at a first reference position the gamma-ray detector so as to obtain a first positional-information coordinate output from the gamma-ray detector; processing the first positional-information coordinate output indicative of a second reference position with respect to the matrix output derived from the detector so as to produce positional correction data; acquiring a third positional-information coordinate output from the detector while injecting a radio isotope into a biological body under medical examination; and, correcting the third positional-information coordinate output based upon the positional correction data.
    • 在γ照相机装置中,通过包括以下步骤的方法,包含在γ射线检测器的输出坐标矩阵中的位置偏移:将参考RI(放射性同位素)源定位在第一参考位置处,将伽马射线检测器定位成 获得从伽马射线检测器输出的第一位置信息坐标; 处理相对于从检测器导出的矩阵输出指示第二参考位置的第一位置信息坐标输出,以产生位置校正数据; 获取从检测器输出的第三位置信息坐标,同时在体格检查下将放射性同位素注入生物体; 以及基于位置校正数据校正第三位置信息坐标输出。
    • 5. 发明授权
    • Nuclear medicine diagnostic apparatus
    • 核医学诊断仪器
    • US5739540A
    • 1998-04-14
    • US668230
    • 1996-06-21
    • Nobutoku MotomuraTakashi IchiharaHiroharu Kawahara
    • Nobutoku MotomuraTakashi IchiharaHiroharu Kawahara
    • G01T1/161A61B6/00G01T7/00G21K5/00G21K5/02
    • A61B6/447A61B6/037G21K5/00
    • A nuclear medicine diagnostic apparatus, particularly involving emission computed tomography, wherein absorption correction is performed by a gamma ray source including a plurality of line sources arrayed in a common plane. Each line source produces a radiation distribution having a peak and defining a half-width distance at which the radiation from the line source is attenuated by one-half. The plurality of line sources are arranged at a pitch equal to the half-width distance or an integral multiple of the half-width distance. In one embodiment, a serpentine line source is used having straight line portions and a plurality of bent portions, with the straight line portions arrayed parallel to each other at a pitch equal to the half-width distance or an integral multiple of the half-width distance.
    • 一种核医学诊断装置,特别涉及发射计算机断层摄影,其中,由包括排列在公共平面中的多个线源的伽马射线源执行吸收校正。 每个线源产生具有峰值并限定半线宽度距离的辐射分布,在该距离处来自线源的辐射被衰减一半。 多个线源以等于半宽度距离或半角距离的整数倍的间距排列。 在一个实施例中,使用具有直线部分和多个弯曲部分的蛇形线源,其中直线部分以等于半宽度距离的间距或半宽度的整数倍彼此平行排列 距离。
    • 6. 发明授权
    • Scintillation camera apparatus capable of quantitatively eliminating
scattering signal components by setting multiple window and method for
quantitatively eliminating scattering signal components
    • 能够通过设定多个窗口定量消除散射信号分量的闪烁照相机装置和定量消除散射信号分量的方法
    • US5371672A
    • 1994-12-06
    • US841517
    • 1992-02-26
    • Nobutoku MotomuraTakashi Ichihara
    • Nobutoku MotomuraTakashi Ichihara
    • G01T1/164G01T1/208G06F15/42
    • G01T1/1647G01T1/1642G01T1/208
    • In a scintillation camera apparatus, a gamma-ray scattering signal component is removed from gamma-ray spectral energy distribution data. A scattering component removing method first detects an entire radiation emitted from a radioisotope having a specific energy level and injected into a biological body under medical examination to produce an entire radiation detecting signal. Then only first partial radiation from the radioisotope passing through a first energy range determined in relation to the specific energy level of the radioisotope is detected, thereby producing a first count value of the partial radiation. Partial second and third radiation from the radioisotope passing through second and third energy ranges positioned at both ends of the first energy range and also each having a width narrower than that of the first energy range are then detected, thereby producing second and third count values of the second and third partial radiation. These first to third radiation detecting steps are simultaneously performed. An amount of a scattering radiation component contained in the first partial radiation from the radioisotope passing through the first energy range based on both the second and third count values of the second and third partial radiation is then inferred. The amount of the scattering signal component is then subtracted from the first partial radiation passing through the first energy range, whereby the scattering signal component is removed from the entire radiation detecting signal.
    • 在闪烁照相机装置中,伽马射线散射信号分量从伽马射线能谱分布数据中去除。 散射成分去除方法首先检测从具有比能量水平的放射性同位素发射的整个辐射并在体格检查下注入生物体以产生整个辐射检测信号。 然后,仅检测到通过相对于放射性同位素的比能量水平确定的第一能量范围的来自放射性同位素的第一部分辐射,从而产生部分辐射的第一计数值。 然后检测来自放射性同位素的部分第二和第三辐射通过位于第一能量范围的两端的第二和第三能量范围,并且每个都具有比第一能量范围窄的宽度,从而产生第二和第三计数值 第二和第三部分辐射。 这些第一至第三辐射检测步骤同时进行。 然后推断出基于第二和第三部分辐射的第二和第三计数值的通过第一能量范围的来自放射性同位素的第一部分辐射中包含的散射辐射成分的量。 然后从穿过第一能量范围的第一部分辐射中减去散射信号分量的量,从而从整个辐射检测信号中去除散射信号分量。
    • 7. 发明授权
    • Apparatus for truncation correction of transmission CT and nuclear medical diagnostic apparatus using the same
    • 用于传输CT的截断校正的装置和使用其的核医疗诊断装置
    • US06339223B1
    • 2002-01-15
    • US09348665
    • 1999-07-06
    • Nobutoku MotomuraTakashi Ichihara
    • Nobutoku MotomuraTakashi Ichihara
    • A61B500
    • G06T11/005A61B6/5235G06T2211/432
    • SPECT data is collected to produce a SPECT image and transmission CT projection data is collected to produce a transmission CT image. The contours of the body of a subject under examination is extracted from the SPECT image. Using data representing the contours of the body, a portion of the transmission CT projection data is approximated by a curve. The sum of the curve-approximated transmission CT projection data and the center of gravity of the transmission CT image are computed. The truncated portion is estimated from the sum of the transmission CT projection data and the center of gravity of the transmission CT image and the transmission CT projection data is then corrected. The correction of the transmission CT projection data involves producing (extrapolation) anew a curve represented by a quadratic polynomial for that region (truncated region) of the transmission CT projection data which has been approximated tentatively by an ellipse in order to determine the sum and the center of gravity.
    • 收集SPECT数据以产生SPECT图像,并且收集透射CT投影数据以产生透射CT图像。 从SPECT图像中提取被检查对象的身体轮廓。 使用表示身体轮廓的数据,传输CT投影数据的一部分由曲线近似。 计算曲线近似透射CT投影数据和透射CT图像的重心之和。 根据透射CT投影数据和透射CT图像的重心的和来估计截断部分,然后校正透射CT投影数据。透射CT投影数据的校正包括产生(外插)新曲线 由用于确定总和和重心的椭圆近似的透射CT投影数据的该区域(截断区域)的二次多项式表示。
    • 8. 发明授权
    • Scintillation camera
    • 闪烁相机
    • US5610402A
    • 1997-03-11
    • US412016
    • 1995-03-28
    • Nobutoku MotomuraTakashi Ichihara
    • Nobutoku MotomuraTakashi Ichihara
    • G01T1/164
    • G01T1/1642
    • First RI having a first photo-peak and a second photo-peak and second RI having a third photo-peak close to the second photo-peak are simultaneously dosed to a test body. A first injection number is the number of energy injections in the vicinity of the first photo-peak from first RI. A second injection number is obtained as a sum of the third injection number in the vicinity of the second photo-peak from the first RI, and the fourth injection number of energy injections in the vicinity of the third photo-peak from the second RI. The third injection number is obtained on the basis of a predetermined coefficient and the first injection number. Therefore, the injection number of all .gamma. rays emitted from the first RI is obtained on the basis of the third injection number and the first injection number. In addition, all the .gamma. rays emitted from the second RI can be obtained on the basis of the third injection number and the second injection number. The problem of cross-talk can be solved thereby.
    • 同时将具有第一光峰和第二光峰的第一RI和具有接近第二光峰的第三光峰的第二RI分配给测试体。 第一注射次数是从第一次RI开始的第一个光峰附近的能量注入次数。 获得第二喷射数作为从第一RI开始的第二光峰附近的第三喷射数与从第二RI相邻的第三光峰附近的第四喷射次数。 基于预定系数和第一喷射数量获得第三喷射数。 因此,基于第三喷射次数和第一喷射次数获得从第一RI发射的所有γ射线的喷射次数。 此外,可以基于第三喷射次数和第二喷射次数获得从第二RI发射的所有γ射线。 可以解决串扰问题。