会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • SMART USER-CENTRIC INFORMATION AGGREGATION
    • SMART用户中心信息聚合
    • US20140052751A1
    • 2014-02-20
    • US13586711
    • 2012-08-15
    • Jianwen ZhangZhimin ZhangJian-Tao SunJun YanNing LiuLei JiWeizhu ChenZheng Chen
    • Jianwen ZhangZhimin ZhangJian-Tao SunJun YanNing LiuLei JiWeizhu ChenZheng Chen
    • G06F17/30
    • G06F17/30032G06F17/30905
    • A smart user-centric information aggregation system allows a user to define a region of content displayed in a display of a device and performs information aggregation on behalf of the user. The smart user-centric information aggregation system searches, aggregates and groups information related to content included in the region of content for the user while the user can continue to perform his/her original course of actions without interruption. After finding information related to the desired content, the smart user-centric information aggregation system may notify the user and present the found information to the user upon receiving confirmation from the user. The smart user-centric information aggregation system may continue to find new related information and update the presentation with the newly found information periodically, in some instances without user intervention or input.
    • 以智能用户为中心的信息聚合系统允许用户定义显示在设备显示器中的内容区域,并代表用户执行信息聚合。 智能用户为中心的信息聚合系统在用户可以继续执行他/她的原始行为过程而不间断地搜索,聚合和分组与用户内容区域中包含的内容相关的信息。 在找到与期望内容相关的信息之后,智能用户为中心的信息聚合系统可以在接收到来自用户的确认时通知用户并向用户呈现找到的信息。 以智能用户为中心的信息聚合系统可以继续寻找新的相关信息,并且在某些情况下,不需要用户干预或输入,定期更新新发现的信息。
    • 4. 发明授权
    • Mining new words from a query log for input method editors
    • 从输入法编辑器的查询日志挖掘新单词
    • US08407236B2
    • 2013-03-26
    • US12244774
    • 2008-10-03
    • Weizhu ChenQian Xun LiLi JuZheng ChenDong LiZhikai Fan
    • Weizhu ChenQian Xun LiLi JuZheng ChenDong LiZhikai Fan
    • G06F17/30
    • G06F17/30731
    • Described is a technology in which new words (including a phrase or set of Chinese characters) are mined from a query log. The new words may be added to (or otherwise supplement) an IME dictionary. A set of candidate queries may be selected from the log based upon market (e.g., the Chinese market) and/or by language. From this set, various filtering steps are performed to locate only new words that are frequently in used. For example, only frequent queries are kept for further processing, which may include filtering out queries based on length (e.g., less than two or greater than eight Chinese characters), and/or filtering out queries based on too many stop-words in the query. Processing may also include filtering out a query that is a substring of a larger query, or vice-versa. Also described is Pinyin-based clustering and filtering, and filtering out queries already handled in the dictionary.
    • 描述了从查询日志中挖出新词(包括短语或一组汉字)的技术。 新词可能会添加到(或以其他方式补充)IME词典。 可以基于市场(例如,中国市场)和/或按语言从日志中选择一组候选查询。 从该集合中,执行各种过滤步骤以仅定位经常使用的新词。 例如,只有频繁的查询被保留用于进一步的处理,其可以包括基于长度(例如,少于两个或大于八个汉字)过滤掉查询,和/或基于过多的停止词过滤掉查询 查询。 处理还可以包括过滤掉作为较大查询的子串的查询,反之亦然。 还描述了基于拼音的群集和过滤,并且过滤掉已经在字典中处理的查询。
    • 8. 发明授权
    • Click modeling for URL placements in query response pages
    • 点击查询响应页面中的网址展示位置的建模
    • US08589228B2
    • 2013-11-19
    • US12795631
    • 2010-06-07
    • Weizhu ChenGang WangZheng ChenZhikai FanThomas Minka
    • Weizhu ChenGang WangZheng ChenZhikai FanThomas Minka
    • G06F15/18G06F17/60G06Q30/00G06N5/02
    • G06Q30/02G06Q30/0255
    • A “General Click Model” (GCM) is constructed using a Bayesian network that is inherently capable of modeling “tail queries” by building the model on multiple attribute values that are shared across queries. More specifically, the GCM learns and predicts user click behavior towards URLs displayed on a query results page returned by a search engine. Unlike conventional click modeling approaches that learn models based on individual queries, the GCM learns click models from multiple attributes, with the influence of different attribute values being measured by Bayesian inference. This provides an advantage in learning that enables the GCM to achieve improved generalization and results, especially for tail queries, than conventional click models. In addition, most conventional click models consider only position and the identity of URLs when learning the model. In contrast, the GCM considers more session-specific attributes in making a final prediction for anticipated or expected user click behaviors.
    • 使用贝叶斯网络构建“通用点击模型”(GCM),该贝叶斯网络本质上能够通过在查询之间共享的多个属性值上建立模型来建模“尾部查询”。 更具体地说,GCM学习并预测用户对搜索引擎返回的查询结果页面上显示的URL的点击行为。 不同于传统的点击建模方法,基于个别查询的模型,GCM从多个属性学习点击模型,不同属性值的影响是通过贝叶斯推理来衡量的。 这提供了学习的优势,使得GCM能够实现改进的泛化和结果,特别是尾部查询,而不是传统的点击模型。 此外,大多数传统的点击模型只在学习模型时考虑URL的位置和身份。 相比之下,GCM考虑更多的会话特定属性来对预期或预期的用户点击行为进行最终预测。